Skip to main content
Log in

Theory of a fast, sensitive, submillimeter wave glow discharge detector

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abrams, R. L., Yariv, A., and Yeh, P. A. (1977). IEEE J. Quant. Electr.QE-13, 79–82.

    Google Scholar 

  • Abrams, R. L., Asaya, C. K., Plant, T. K., and Popa, A. E. (1977). IEEE J. Quant. Electr.QE-13, 82–85.

    Google Scholar 

  • Agostini, P., Barjot, G., Mainfray, G., Manus, C., and Thebault, J. (1970). IEEE J. Quant. Electr.QE-6, 782–788.

    Google Scholar 

  • Alcock, A. J., De Michelis, C., and Richardson, M. C. (1969). Appl. Phys. Lett.19, 72–73.

    Google Scholar 

  • Anderson, J. M. (1960). Proc. IRE48, 1662–1663.

    Google Scholar 

  • Benson, F. A. and Mayo, G. (1954). J. Sci. Instr.31, 118–120.

    Google Scholar 

  • Birdsall, C. K. and Bridges, W. B. (1966). “Electron dynamics of diode regions,” Academic Press, N.Y.

    Google Scholar 

  • Buscher, H. T., Tomlinson, R. G., and Damon, E. K. (1965). Phys. Rev. Lett.15, 847–849.

    Google Scholar 

  • Chebotayer, V. P., Klementyev, V. M., and Matyugin, Y.A. (1976). Appl. Phys.11, 163–165.

    Google Scholar 

  • Chen, C. L., Leiby, C. C., and Goldstein, L. (1961). Phys. Rev.121, 1391–1400.

    Google Scholar 

  • Davenport, W. B. and Root, W. L. (1958). “An introduction to the theory of random signals and noise.” McGraw-Hill, N.Y., 135–138.

    Google Scholar 

  • Eytan, G. and Kopeika, N. S. (1978). IEEE Trans. Plasma Sc.PS-6, 261–265.

    Google Scholar 

  • Farhat, N. H. and Kopeika, N. S. (1972). Proc. IEEE60, 759–760.

    Google Scholar 

  • Guentzler, R. E. (1975). IEEE Trans. Electr. Dev.ED-22, 47–50.

    Google Scholar 

  • Kang, M. H., Chung, K. M., and Becker, M. F. (1976). J. Appl. Phys.47, 4944–4948.

    Google Scholar 

  • Kopeika, N. S. and Bordogna, J. (1970). Proc. IEEE58, 1571–1577.

    Google Scholar 

  • Kopeika, N. S. and Farhat, N. H., (1975). IEEE Trans. on Electron Dev.ED-22, 534–548; (1976)ED-23, 1113.

    Google Scholar 

  • Kopeika, N. S., Galore, B., Stempler, D. and Heimenrath, Y. (1975). IEEE Trans. on Microwave Theory and Tech.MTT-23, 843–846.

    Google Scholar 

  • Kopeika, N. S. and Kushelevsky, A. P. (1976). Proc. IEEE64, 369–370.

    Google Scholar 

  • Kopeika, N. S., Makover, Y., and Schonbach, S. (1979). IEEE Trans. on Microwave Theory and Tech.MTT-27, 227–232.

    Google Scholar 

  • Kopeika, N. S. and Rosenbaum, J. (1976). IEEE Trans. Plasma Sci.PS-4, 51–61.

    Google Scholar 

  • Kopeika, N. S. (1978). IEEE Trans. Plasma Sci.PS-6, 139–157.

    Google Scholar 

  • Kopeika, N. S., Eytan, G., and Kushelevsky, A. P. (1979). J. Appl. Phys.50, 11–16.

    Google Scholar 

  • Kushelevsky, A. P. and Kopeika, N. S. (1976). Trans. Nucl. Soc. Israel4, 71–74.

    Google Scholar 

  • Lobov, G. D. (1960). Radiotekh Elektron5, 1848–1861 (Radio Eng. Electron.5, 152–165).

    Google Scholar 

  • Low, F. J. and Hoffman, A. R. (1963). Appl. Opt.2, 649–650.

    Google Scholar 

  • Macdonald, A. D. (1966). “Microwave breakdown in gases.” Wiley, N.Y.

    Google Scholar 

  • Makover, Y., Manor, O., and Kopeika, N. S. (1978). IEEE Trans. on Microwave Theory and Tech.MTT-26, 38–43.

    Google Scholar 

  • McCain, D. C. (1970). IEEE Trans. on Microwave Theory and Tech.MTT-18, 64–65.

    Google Scholar 

  • Meyer, J. and Albach, G. G. (1976). Phys. Rev. A.13, 1091–1094.

    Google Scholar 

  • Morgan, F., Evans, B. B. and Morgan, C. G. (1971). J. Phys. D: Appl. Phys.4, 225–235.

    Google Scholar 

  • Morgan, C. G. (1975). Rep. Prog. Phys.38, 621–665.

    Google Scholar 

  • Nastase, L., Pascu, M. L., and Masa, G. (1982). Rev. Rom. Phys.27, 801–806.

    Google Scholar 

  • Oliver, B. M. (1965). Proc. IEEE53, 436–454.

    Google Scholar 

  • Opher, R., Politch, J., and Felsteiner, J. (1978). Appl. Phys. Lett.11, 701–702.

    Google Scholar 

  • Parzen, P. and Goldstein, L. (1951). Phys. Rev.82, 724–726.

    Google Scholar 

  • Politch, J. and Farhat, N. H. (1978). J. Phys. E,11, 623

    Google Scholar 

  • Richards, P. L. and Greenberg, L. T. (1982), “Infrared detectors for low-background astronomy: incoherent and coherent devices from the micrometer to one millimeter,” in Infrared and Millimeter Waves, vol. 6, pp. 149–207.

  • Severin, P. J. W. (1965). Philips Res. Rep. Supp. 2.

  • Severin, P. J. W. and Van Nie, A. G. (1966). IEEE

  • Trans. on Microwave Theory and Tech.MTT-14, 431–436.

  • Shkarofsky, I. P. (1974). RCA Rev.35, 58–70.

    Google Scholar 

  • Smith, D. C. and Haught, A. F. (1969). Phys. Rev. Lett.16, 1085–1088

    Google Scholar 

  • Tulip, J. and Seguin, H. (1973). Phys. Lett.44A, 469–470.

    Google Scholar 

  • Von Engel, A. (1965) “Ionized Gases.” Clarendon Press, Oxford.

    Google Scholar 

  • Wilson, W. J. (1983). IEEE Trans. on Microwave Theory and Tech.MTT-31, 873–878.

    Google Scholar 

  • Young, M. and Hercher, M. (1967). J. Appl. Phys.38, 4393–4400.

    Google Scholar 

  • Zaitsev, N. K. and Shaparev, N. Y. (1980). Zh. Tekh. Fiz.50, 168–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopeika, N.S. Theory of a fast, sensitive, submillimeter wave glow discharge detector. Int J Infrared Milli Waves 5, 1333–1348 (1984). https://doi.org/10.1007/BF01010055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01010055

Keywords

Navigation