Advertisement

Journal of Statistical Physics

, Volume 41, Issue 5–6, pp 915–939 | Cite as

Stationary states for a mechanical system with stochastic boundary conditions

  • S. Goldsterin
  • C. Kipnis
  • N. Ianiro
Articles

Abstract

We consider a system of Newtonian particles, with a long-range repulsive pair potential, moving in a cavity whose surface temperature is spatially varying. When a particle hits the surface, it is “thermalized” at the temperature of the collision point. We prove that this system has a unique stationary ensemble, to which any initial distribution converges for large times. We show that this stationary ensemble depends continuously on the surface temperature profile.

Key words

Nonequilibrium steady state Newtonian Markov process stationary probability measure heat flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Goldstein, J. L. Lebowitz, and E. Presutti, Mechanical systems with stochastic boundaries, inRandom Fields, J. Fritz, J. L. Lebowitz, and D. Szasz, eds. (North-Holland, Amsterdam, 1981).Google Scholar
  2. 2.
    S. Goldstein, J. L. Lebowitz, and K. Ravishankar,Commun Math. Phys. 85:419 (1982).Google Scholar
  3. 3.
    J. Farmer, S. Goldstein, and E. R. Speer,J. Stat. Phys. 34:263 (1984).Google Scholar
  4. 4.
    C. Marchioro, A. Pellegrinotti, E. Presutti, and M. Pulvirenti,J. Math. Phys. 17(5):647 (1976).Google Scholar
  5. 5.
    J. T. Schwartz,Differential Geometry and Topology (Gordon and Breach, New York, 1968); J. Milnor,Topology from the differential viewpoint (The University Press of Virginia, Charlottesville, 1965).Google Scholar
  6. 6.
    S. Goldstein, J. L. Lebowitz, K. Ravishankar, Approach to equilibrium in models of a system in contact with a heat bath (unpublished).Google Scholar
  7. 7.
    J. L. Lebowitz and P. G. Bergmann,Ann. Phys. (N.Y.) 1:1 (1957).Google Scholar
  8. 8.
    J. L. Lebowitz and H. Spohn,J. Stat. Phys. 19:633 (1978).Google Scholar
  9. 9.
    C. Bardos, R. Caflisch, and B. Nicolaenko, Thermal layer solutions of the Boltzmann equation, inStatistical Physics and Dynamical Systems, J. Fritz, A. Jaffe, and D. Szasz, eds. (Birkhäuser, Boston, 1985).Google Scholar
  10. 10.
    N. Ianiro and J. L. Lebowitz,Found. Phys. 15:531 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • S. Goldsterin
    • 1
  • C. Kipnis
    • 2
  • N. Ianiro
    • 3
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick
  2. 2.Centre de Mathématiques AppliquéesEcole PolytechniquePalaiseau CedexFrance
  3. 3.Dipartimento di MatematicaUniversita dell'AquilaL'AquilaItaly

Personalised recommendations