Advertisement

Journal of Statistical Physics

, Volume 41, Issue 5–6, pp 811–824 | Cite as

Reflection principles for biased random walks and application to escape time distributions

  • M. Khantha
  • V. Balakrishnan
Articles

Abstract

We present a reflection principle for an arbitrarybiased continuous time random walk (comprising both Markovian and non-Markovian processes) in the presence of areflecting barrier on semi-infinite and finite chains. For biased walks in the presence of a reflecting barrier this principle (which cannot be derived from combinatorics) is completely different from its familiar form in the presence of an absorbing barrier. The result enables us to obtain closed-form solutions for the Laplace transform of the conditional probability for biased walks on finite chains for all three combinations of absorbing and reflecting barriers at the two ends. An important application of these solutions is the calculation of various first-passage-time and escape-time distributions. We obtain exact results for the characteristic functions of various kinds of escape time distributions for biased random walks on finite chains. For processes governed by a long-tailed event-time distribution we show that the mean time of escape from bounded regions diverges even in the presence of a bias—suggesting, in a sense, the absence of true long-range diffusion in such “frozen” processes.

Key words

Continuous time random walk biased random walk reflection principle escape time distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943).Google Scholar
  2. 2.
    W. Feller,An Introduction to Probability Theory and Its Applications, Vols. 1 and 2 (Wiley, New York, 1966).Google Scholar
  3. 3.
    E. W. Montroll and B. J. West, inFluctuation Phenomena, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1979).Google Scholar
  4. 4.
    V. Balakrishnan and M. Khantha,Pramana 21:187 (1983).Google Scholar
  5. 5.
    D. R. Cox,Renewal Theory (Methuen, London, 1967).Google Scholar
  6. 6.
    V. Balakrishnan, inStochastic Processes—Formalism and Applications, G. S. Agarwal and S. Dattagupta, eds. (Lecture Notes in Physics, No. 184, Springer, Berlin, 1983).Google Scholar
  7. 7.
    V. Balakrishnan and G. Venkataraman,Pramana 16:109 (1981).Google Scholar
  8. 8.
    M. Lax and H. Scher,Phys. Rev. Lett. 39:781 (1977).Google Scholar
  9. 9.
    M. Khantha and V. Balakrishnan,Phys. Rev. B 29:4679 (1984).Google Scholar
  10. 10.
    K. W. Kehr and J. W. Haus,Physica A93:412 (1978).Google Scholar
  11. 11.
    V. Balakrishnan,Pramana 17:55 (1981).Google Scholar
  12. 12.
    M. Khantha and V. Balakrishnan,J. Phys. C 16:6291 (1983).Google Scholar
  13. 13.
    M. Khantha and V. Balakrishnan,Pramana 21:111 (1983).Google Scholar
  14. 14.
    A. J. F. Siegert,Phys. Rev. 81:617 (1951).Google Scholar
  15. 15.
    D. A. Darling and A. J. F. Siegert,Ann. Math. Stat. 24:624 (1953).Google Scholar
  16. 16.
    E. W. Montroll and G. H. Weiss,J. Math. Phys. 6:167 (1965).Google Scholar
  17. 17.
    E. W. Montroll,J. Math. Phys. 10:753 (1969).Google Scholar
  18. 18.
    V. Seshadri and B. J. West,Proc. Natl. Acad. Sci. (USA) 79:4501 (1982).Google Scholar
  19. 19.
    M. F. Shlesinger,J. Stat. Phys. 10:421 (1974).Google Scholar
  20. 20.
    H. Scher and M. Lax,Phys. Rev. B 7:4491 (1973).Google Scholar
  21. 21.
    H. Scher and E. W. Montroll,Phys. Rev. B 12:2455 (1975).Google Scholar
  22. 22.
    J. K. E. Tunaley,J. Stat. Phys. 24:587 (1976).Google Scholar
  23. 23.
    M. F. Shlesinger and B. D. Hughes,Physica A109:597 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. Khantha
    • 1
  • V. Balakrishnan
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyMadrasIndia

Personalised recommendations