Journal of Statistical Physics

, Volume 49, Issue 1–2, pp 121–137 | Cite as

Nonequilibriurn discontinuous phase transitions in a fast ionic conductor model: Coexistence and spinodal lines

  • J. Marro
  • J. L. Vallés


Two-dimensional lattice-gas models with attractive interactions and particle-conserving hopping dynamics under the influence of a very large external electric field along a principal axis are studied in the case of off-critical densities. We describe the corresponding nonequilibrium first-order phase transitions, evaluate coexistence and spinodal lines, and make some comparisons with experimental observations on fast ionic conductors.

Key words

Stochastic lattice-gas model stationary nonequilibrium states fast ionic conductors metastability nonequilibrium first-order phase transitions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Vallés and J. Marro,J. Stat. Phys., this issue, preceding paper.Google Scholar
  2. 2.
    J. B. Boyce and A. B. Huberman,Phys. Rep. 51:189 (1979).Google Scholar
  3. 3.
    W. Dietrich, P. Fulde, and I. Peschel,Adv. Phys. 29:527 (1980).Google Scholar
  4. 4.
    J. B. Bates, J. Wang, and N. J. Dubney,Phys. Today 1982(July):46.Google Scholar
  5. 5.
    Yu. Ya. Gurevich and Yu. Kharkats,Phys. Rep. 139:201 (1986).Google Scholar
  6. 6.
    K. Binder and H. Müller-Krumbhaar,Phys. Rev. B 9:2328 (1974).Google Scholar
  7. 7.
    O. Penrose and J. L. Lebowitz,J. Stat. Phys. 3:211 (1971); inFluctuation Phenomena, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, (1979).Google Scholar
  8. 8.
    M. Creutz, L. Jacobs, and C. Rebbi,Phys. Rev. D 20:1915 (1979).Google Scholar
  9. 9.
    O. G. Mouritsen,Computer Studies of Phase Transitions and Critical Phenomena (Springer-Verlag, Berlin, 1984).Google Scholar
  10. 10.
    K. Binder, M. Kalos, J. L. Lebowitz, and J. Marro,Adv. Colloid Interface Sci. 10:173 (1979).Google Scholar
  11. 11.
    S. Geller (ed.),Solid Electrolytes (Springer-Verlag, Berlin, 1977).Google Scholar
  12. 12.
    G. D. Mahan and W. L. Roth (eds.),Superionic Conductors (Plenum Press, New York, 1976).Google Scholar
  13. 13.
    M. B. Salamon (ed.),Physics of Superionic Conductors (Springer-Verlag, Berlin, 1979).Google Scholar
  14. 14.
    M. L. Rice, S. Strässler, and G. A. Toombs,Phys. Rev. Lett. 32:596 (1974).Google Scholar
  15. 15.
    I. A. Ryzhkin,Solid State Commun. 56:57 (1985).Google Scholar
  16. 16.
    H. U. Beyeler, inPhysics in One Dimension, J. Bernasconi and T. Schneider, eds. (Springer-Verlag, Berlin, 1981).Google Scholar
  17. 17.
    P. Brüesch, T. Hibma, and W. Bührer,Phys. Rev. B 27:5052 (1983).Google Scholar
  18. 18.
    W. Hayes,Contemp. Phys. 19:469 (1978).Google Scholar
  19. 19.
    M. O'Keeffe and B. G. Hyde,Phil. Mag. 33:219 (1976).Google Scholar
  20. 20.
    R. A. Vargas, M. B. Salamon, and C. P. Flynn,Phys. Rev. B 17:269 (1978).Google Scholar
  21. 21.
    T. Hibma,Solid State Commun. 33:445 (1980).Google Scholar
  22. 22.
    W. J. Pardee and G. D. Mahan,J. Chem. Phys. 61:2173 (1974).Google Scholar
  23. 23.
    J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).Google Scholar
  24. 24.
    J. Marro and R. Toral,Am. J. Phys. 54:1114 (1986).Google Scholar
  25. 25.
    E. Vlieg, H. W. den Hartog, and M. Winnink,J. Phys. Chem. Solids 47:521 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • J. Marro
    • 1
  • J. L. Vallés
    • 1
    • 2
  1. 1.Departamento de Fisica FonamentalUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departamento de Fisica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations