Self consistent theory for gyrotrons including effect of voltage depression

  • E. Borie
  • G. Gantenbein
Article

Abstract

The effect of the voltage depression due to space charge on the beam parameters in a gyrotron is investigated. Although the voltage depression can be compensated to some extent by increasing the beam voltage, some loss of efficiency is to be expected, especially in the case of high currents and volume modes.

Keywords

Depression Space Charge High Current Volume Mode Beam Parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borie, E., Dumbrajs, O., 1986. Calculation of eigenmodes of tapered gyrotron resonators. Int. J. Electronics60, 143–154.Google Scholar
  2. Borie, E., 1986. Self-consistent code for a 150 GHz gyrotron. Int. J. of Infrared and Millimeter Waves7, 1863–1879.Google Scholar
  3. Borie, E., 1989. Effect of space charge on the beam-field interaction in gyrotrons. KfK internal report, unpublished.Google Scholar
  4. Bratman, V.L., Moiseev, M.A., Petelin, M.I., Erm, R.E., 1973. Theory of gyrotrons with a non-fixed structure of the high frequency field, Radio Phys. Quantum Electron.16, 474–480Google Scholar
  5. Bratman, V.L., Petelin, M.I., 1975. Optimizing the parameters of high power gyromonotrons with RF field of nonfixed structure. Radio Phys. Quantum Electron.18, 1136–1140.Google Scholar
  6. Bratman, V.L., Moiseev, M.A., Petelin, M.I., 1981. Theory of gyrotrons with low—Q electromagnetic systems. From “Gyrotrons: collected papers”, USSR Academy of Sciences, Insitute of Applied Physics, GorkiGoogle Scholar
  7. Charbit, P., Herscovici, A., Mourier, G., 1981. A partly self consistent theory of the gyrotron. Int. J. Electronics51, 303–330Google Scholar
  8. Drobot, A., Kim, K., 1981. Space charge effect on the equilibrium of guided electron flow with gyromotion. Int. J. Electronics51, 351–367.Google Scholar
  9. Felch, K., Huey, H., Jory, H., 1990. Gyrotrons for ECH Applications. J. Fusion Energy,9, 59–75.Google Scholar
  10. Fliflet, A.W., Read, M.E., 1981. Use of weakly irregular waveguide theory to calculate eigenfrequencies, Q—values and RF field functions for gyrotron oscillators. Int. J. Electronics51, 475–484.Google Scholar
  11. Fliflet, A.W., Read, M.E., Chu, K.R., Seeley, R., 1982. A self—consistent field theory for gyrotron oscillators: application to a low Q gyromonotron. Int. J. Electronics53, 505–521.Google Scholar
  12. Flyagin, V.A., Gaponov, A.V., Petelin, M.I., Yulpatov, V.K., 1977. The gyrotron. IEEE Trans. Microwave Theory and Tech. MTT-25, 514–521.Google Scholar
  13. Flyagin, V.A., Nusinovich, G.S., 1988. Gyrotron oscillators. Proceedings IEEE76, 644–656.Google Scholar
  14. Ganguly, A.K., Chu, K.R., 1984. Limiting Current in Gyrotrons. Int. J. Infrared and Millimeter Waves5, 103–121.Google Scholar
  15. Kleva, R.G., Antonsen, T.M., Levush, B., 1988. The effect of the time dependent self—consistent electrostatic field on gyrotron operation. Phys. Fluids31, 375–386.Google Scholar
  16. Mourier, G., 1980. Gyrotron tubes — a theoretical study. Archiv f. Elektronik und Übertragungstechnik34, 473–484.Google Scholar
  17. Vlasov, S.N., Zhislin, G.M., Orlova, I.M., Petelin, M.I., Rogacheva, G.G., 1969. Irregular waveguides as open resonators. Rad. Phys. Quant. Electron.12, 972–978.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • E. Borie
    • 1
  • G. Gantenbein
    • 1
  1. 1.Kernforschungszentrum KarlsruheITPKarlsruhe 1Germany

Personalised recommendations