Advertisement

Journal of Statistical Physics

, Volume 33, Issue 2, pp 241–260 | Cite as

The Clausius-Mossotti formula and its nonlocal generalization for a dielectric suspension of spherical inclusions

  • B. U. Felderhof
  • G. W. Ford
  • E. G. D. Cohen
Articles

Abstract

Employing a recently developed cluster expansion for the effective dielectric constant of a suspension of spherical inclusions, we show which parts of the cluster integrals give rise to the Clausius-Mossotti formula. The same selection of terms is then used to obtain an approximate expression for the wave-vector-dependent effective dielectric tensor. For a system of hard spheres with only dipole polarizability this expression is evaluated in closed form. This last result is then used to derive the form of the electrostatic potential due to a point charge in the effective medium. For physically reasonable values of the polarizability, the potential has asymptotically the form corresponding to a medium with the Clausius-Mossotti dielectric constant, while at short range it oscillates about this form. For values of the polarizability beyond the physical range critical points are found at which the oscillations become long range.

Key words

Clausius-Mossotti formula cluster expansion random media dielectric suspectibility nonlocal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Agranovich and V. L. Ginzburg,Spatial Dispersion in Crystal Optics and the Theory of Excitons (Interscience, New York, 1966).Google Scholar
  2. 2.
    G. D. Mahan and R. M. Mazo,Phys. Rev. 175:1191 (1968).Google Scholar
  3. 3.
    L. M. Hafkenscheid and J. Vlieger,Physica 75:57 (1974).Google Scholar
  4. 4.
    A. Mead,Phys. Rev. B 17:4644 (1978).Google Scholar
  5. 5.
    J. J. Hopfield and D. G. Thomas,Phys. Rev. 132:563 (1963).Google Scholar
  6. 6.
    B. U. Felderhof, G. W. Ford, and E. G. D. Cohen,J. Slat. Phys. 28:135 (1982), referred to as I.Google Scholar
  7. 7.
    B. U. Felderhof, G. W. Ford, and E. G. D. Cohen,J. Stat. Phys. 28:649 (1982), referred to as II.Google Scholar
  8. 8.
    C. J. F. Böttcher,Theory of Electric Polarization, Vol. I, 2nd ed. (Elsevier, Amsterdam, 1973), p. 172.Google Scholar
  9. 9.
    G. D. Mahan,Solid State Ionics 1:29 (1980).Google Scholar
  10. 10.
    Z. Hashin and S. Shtrikman,J. Appl. Phys. 33:3125 (1962).Google Scholar
  11. 11.
    B. U. Felderhof,J. Phys. C 15:1731, 3943, 3953 (1982).Google Scholar
  12. 12.
    J. R. Dorfman and E. G. D. Cohen,J. Math. Phys. 81:288 (1967).Google Scholar
  13. 13.
    E. T. Whittaker and G. N. Watson,Modern Analysis, 4th ed. (Cambridge University Press, Cambridge, 1952), Chap. VI.Google Scholar
  14. 14.
    C. J. F. Böttcher,Theory of Electric Polarization, Vol. 1, 2nd ed. (Elsevier, Amsterdam, 1973), p. 200.Google Scholar
  15. 15.
    G. Diener and F. Käseberg,Int. J. Solids Structures 12:173 (1976).Google Scholar
  16. 16.
    D. A. G. Bruggeman,Ann. Phys. (Leipzig) 24:636 (1935).Google Scholar
  17. 17.
    G. Diener and J. J. Weissbarth,Continuum Models of Discrete Systems 4, O. Brulin and R. K. T. Hsieh, eds. (North-Holland, Amsterdam, 1981), p. 349.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • B. U. Felderhof
    • 1
  • G. W. Ford
    • 2
  • E. G. D. Cohen
    • 3
  1. 1.Institut für Theoretische Physik ARWTH AachenAachenWest Germany
  2. 2.The University of MichiganAnn Arbor
  3. 3.The Rockefeller UniversityNew York

Personalised recommendations