Advertisement

Journal of Statistical Physics

, Volume 33, Issue 1, pp 23–29 | Cite as

Phase transition in a lattice gas of hard spheres with second-neighbor exclusions on the simple cubic lattice

  • Dale A. Huckaby
Articles

Abstract

Using reflection positivity and the Peierls argument, we prove the existence of an ordered phase at sufficiently high activity for a lattice gas of hard spheres on the simple cubic lattice with first- and second-neighbor exclusions.

Key words

Phase transitions lattice gas Peierls' argument reflection positivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Runnels, inPhase Transitions and Critical Phenomena, Vol. II, C. Domb and M. Green, eds. (Academic, New York, 1972), p. 305.Google Scholar
  2. 2.
    R. L. Dobrushin,Funct. Anal. Appl. 2:292, 302 (1968).Google Scholar
  3. 3.
    O. J. Heilmann,Nuovo Cimento Lett. 3:95 (1972).Google Scholar
  4. 4.
    O. J. Heilmann,Commun. Math. Phys. 36:91 (1974).Google Scholar
  5. 5.
    L. K. Runnels,Commun. Math. Phys. 40:37 (1975).Google Scholar
  6. 6.
    O. J. Heilmann,J. Phys. A 13:1803 (1980).Google Scholar
  7. 7.
    R. J. Baxter,J. Phys. A 13:L61 (1980).Google Scholar
  8. 8.
    J. Orban and A. Bellemans,J. Chem. Phys. 49:363 (1968).Google Scholar
  9. 9.
    J. Orban,Chem. Phys. Lett. 3:702 (1969).Google Scholar
  10. 10.
    L. K. Runnels, J. R. Craig, and H. R. Streiffer,J. Chem. Phys. 54:1234 (1971).Google Scholar
  11. 11.
    A. Bellemans and R. K. Nigam,Phys. Rev. Lett. 16:1038 (1966).Google Scholar
  12. 12.
    B. R. Riemenschneider and D. A. Huckaby,J. Chem. Phys. 58:3940 (1973).Google Scholar
  13. 13.
    J. Orban,J. Phys. A 15:L501 (1982).Google Scholar
  14. 14.
    O. J. Heilmann and E. Praestgaard,J. Phys. A 7:1913 (1974).Google Scholar
  15. 15.
    O. J. Heilmann and E. Praestgaard,J. Stat. Phys. 9:23 (1973).Google Scholar
  16. 16.
    D. A. Huckaby,Phys. Rev. B 20:1208 (1979).Google Scholar
  17. 17.
    J. Fröhlich, R. B. Israel, E. H. Lieb, and B. Simon,J. Stat. Phys. 22:297 (1980).Google Scholar
  18. 18.
    O. J. Heilmann and E. H. Lieb,J. Stat. Phys. 20:679 (1979).Google Scholar
  19. 19.
    R. Peierls,Proc. Cambridge Philos. Soc. 32:477 (1936).Google Scholar
  20. 20.
    See, e.g., Ya. G. Sinai,Teoria Fazovyh Perekhodov (Russian) (Nauka, Moscow, 1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Dale A. Huckaby
    • 1
  1. 1.Department of ChemistryTexas Christian UniversityFort Worth

Personalised recommendations