Optically pumped submillimeter laser lines from CH2F2 and CD2Cl2 using a12C18O2 CW laser

  • J. C. Petersen
  • G. Duxbury


Thirty-nine new submillimetre laser lines in CH2F2 and twelve in CD2Cl2 have been obtained in a Fabry-Perot FIR resonator by optically pumping with a CW12C18O2 laser. The wavelength range obtained for CH2F2 is 126μm to 1091μm and for CD2Cl2 212μm to 774μm. The wavelength measurements are accurate to within 5.10−3. The relative polarisations of the pump laser and the FIR laser output were also determined. Tentative assignments of the IR and FIR transitions were made using existing microwave data.

Key Words

CH2F2 CD2Cl2 optically pumped FIR laser molecular spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Davies and H. Jones, Appl. Phys.22, 53–55 (1980).Google Scholar
  2. 2.
    R. A. Wood, B. W. Davis, A. Vass and C. R. Pidgeon, Opt. Lett.5, 153–154 (1980).Google Scholar
  3. 3.
    J. C. Petersen, J. McCombie and G. Duxbury, Proc. 5th Int. Conf. on IR and Mm Waves, 1980, Würzburg.Google Scholar
  4. 4.
    J. McCombie, J. C. Petersen and G. Duxbury, Proc. 5th National Quantum Electron. Conf., Hull, 1981.Google Scholar
  5. 5.
    J. C. Petersen and G. Duxbury, Qppl. Phys. B27, 19–25 (1982).Google Scholar
  6. 6.
    E. J. Danielewicz and C. O. Weiss, IEEE J. Quantum Electron.QE14, 705–707 (1978).Google Scholar
  7. 7.
    A. Scalabrin and K. M. Evenson, Opt. Lett. 4, 277–278 (1979).Google Scholar
  8. 8.
    J. C. Petersen and G. Duxbury, to be published.Google Scholar
  9. 9.
    A. S. Bennett, M. Wigglesworth and H. Herman, private communications, to be published.Google Scholar
  10. 10.
    T. A. Galantowicz, E. J. Danielewicz, F. B. Foote and D. T. Hodges, Int. Conf. on Lasers, 1978, Orlando, Florida.Google Scholar
  11. 11.
    F. R. Petersen, A. Scalabrin and K. M. Evenson, Int. Journ. IR and Mm Waves,1, 111–115 (1980).Google Scholar
  12. 12.
    K. Kawaguchi and T. Tanaka, J. Mol. Spectrosc.68, 125–133 (1977).Google Scholar
  13. 13.
    G. Ziegler and U. Dürr, IEEE J. Quantum Electron.QE14, 708 (1978).Google Scholar
  14. 14.
    D. R. Lide, Jr., J. Amer. Chem. Soc.74, 3548–3552 (1952).Google Scholar
  15. 15.
    E. Hirota, T. Tanaka, A. Sakakibara, Y. Ohashi and Y. Morino, J. Mol. Spectrosc.34, 222–230 (1970).Google Scholar
  16. 16.
    E. Hirota, J. Mol. Spectrosc.69, 409–420 (1978).Google Scholar
  17. 17.
    H. B. Stewart and H. H. Nielsen, Phys. Rev.75, 640–650 (1949).Google Scholar
  18. 18.
    I. Suzuki and T. Shimanouchi, J. Mol. Spectrosc.46, 130–145 (1973).Google Scholar
  19. 19.
    D. Kivelson and E. B. Wilson, Jr., J. Chem. Phys.20, 1575 (1952).Google Scholar
  20. 20.
    J. K. G. Watson, J. Chem. Phys.46, 1935 (1967).Google Scholar
  21. 21.
    T. Y. Chang, IEEE Trans. Microwave Theory Tech.,MTT22, 983–988 (1974).Google Scholar
  22. 22.
    C. Freed, L. C. Bradley and R. G. O'Donnell, IEEE J. of Quantum Electron.QE16, 1195 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • J. C. Petersen
    • 1
  • G. Duxbury
    • 1
  1. 1.Department of Natural PhilosophyUniversity of StrathclydeGlasgowScotland

Personalised recommendations