Journal of Statistical Physics

, Volume 2, Issue 1, pp 53–59 | Cite as

Statistical dynamics



A way is suggested of incorporating the exact dynamics of a system into a statistical framework which is self-contained for low-order distribution functions.

Key words

Statistical mechanics kinetic theory entropy nonequilibrium theory probability introduction of dynamics into statistics using Greens functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Gibbs,Elementary Principles in Statistical Mechanics, Yale University Press, New Haven, Connecticut (1902); Dover Publications, New York (1960).Google Scholar
  2. 2.
    L. S. Hall,Ann. Phys. (US)20:382–449 (1962).Google Scholar
  3. 3.
    E. T. Jaynes,Phys. Rev. 106:620–630 (1957).Google Scholar
  4. 4.
    E. T. Jaynes,Phys. Rev. 108:171–190 (1957).Google Scholar
  5. 5.
    R. M. Lewis,J. Math. Phys. 8:1448–1459 (1967).Google Scholar
  6. 6.
    P. M. Morse and H. Feshback,Methods of Theoretical Physics, McGraw-Hill, New York (1953).Google Scholar
  7. 7.
    I. Prigogine,Non-Equilibrium Statistical Mechanics, Interscience Publishers, New York (1962).Google Scholar
  8. 8.
    C. E. Shannon and W. Weaver,The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • A. Tate
    • 1
  1. 1.Royal Armament Research and Development EstablishmentFort HalsteadSevenoaksEngland

Personalised recommendations