Skip to main content
Log in

Mechanism and nonlinear dynamics of an oscillating chemical reaction

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A mechanism and a model of a ferroin-catalyzed oscillating chemical system are descrined. This reaction presents an excellent example of a far-from-equilibrium system that forms spatial and temporal dissipative structures. The model shows that while the well-stirred system has a unique and stable stationary state, the same reagent spread in a thin layer may form complex spatiotemporal paterns. Stationary periodic patterns of both small and large amplitude, standing waves, and inhomogeneous chaotic oscillations are found in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Prigogine,Introduction to Thermodynamics of Irreversible Process (Thomas, Springfield, Illinois, 1955).

    Google Scholar 

  2. P. Glansdorf and I. Prigogine,Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, 1971).

  3. B. P. Belouson,Zb. Ref. Rad. Med. 1958:145.

  4. A. M. Zhabotinsky,Dokl. Akad. Nauk SSSR 157:392 (1964).

    Google Scholar 

  5. A. N. Zaikin and A. M. Zhabotinsky,Nature 225:535 (1970).

    Google Scholar 

  6. A. M. Zhabotinsky and A. N. Zaikin,Oscillatory Processes in Biological and Chemical Systems (Puschino, 1971), p. 279 (in Russian).

  7. A. T. Winfree,Science 175:634 (1972).

    Google Scholar 

  8. R. J. Field, E. E. Körös, and R. M. Noyes,J. Am. Chem. Soc. 94:8649 (1972).

    Google Scholar 

  9. A. B. Rovinsky and A. M. Zhabotinsky,Teor. Eksp. Khim. 14:182 (1978).

    Google Scholar 

  10. A. B. Rovinsky and A. M. Zhabotinsky,Teor. Eksp. Khim. 15:25 (1979).

    Google Scholar 

  11. Z. Noszticius, H. Farkas, and Z. Shelly,J. Chem. Phys. 80:6062 (1984).

    Google Scholar 

  12. L. Kuhnert, H.-J. Krug, and L. Pohlmann,J. Phys. Chem. 89:2022 (1985).

    Google Scholar 

  13. A. B. Rovinsky and A. M. Zhabotinsky,J. Phys. Chem. 88:6081 (1984).

    Google Scholar 

  14. A. B. Rovinsky,J. Phys. Chem. 90:217 (1986).

    Google Scholar 

  15. A. Turing,Phil. Trans. R. Soc. 237B:37 (1952).

    Google Scholar 

  16. A. B. Rovinsky and A. M. Zhabotinsky, inFundamental Research in Chemical Kinetics, A. E. Shilov, ed. (Gordon and Breach, 1986).

  17. A. B. Rovinsky,J. Phys. Chem. 88:4 (1984).

    Google Scholar 

  18. F. Ariese and Z. Nagi-Ungvarai,J. Phys. Chem. 90:1 (1986).

    Google Scholar 

  19. F. Ariese and Z. Nagi-Ungvarai,J. Phys. Chem. 90:1496 (1986).

    Google Scholar 

  20. R. J. Field and H.-D. Försterling,J. Phys. Chem. 90:5400 (1986).

    Google Scholar 

  21. G. Ioss and D. Joseph,Elementary Stability and Bifurcation Theory (Springer-Verlag, 1980).

  22. B. D. Hassard, P. D. Kazarinoff, and J.-H. Wan,Theory and Application of Hopf Bifurcation (Cambridge University Press, 1981).

  23. L. P. Shilnikov,Matem. Zb. 61:104, 433 (1963).

    Google Scholar 

  24. L. P. Shilnikov,Dokl. Akad. Nauk USSR 170:49 (196).

    Google Scholar 

  25. L. P. Shilnikov,Matem. Zb. 77:461 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhabotinsky, A.M., Rovinsky, A.B. Mechanism and nonlinear dynamics of an oscillating chemical reaction. J Stat Phys 48, 959–975 (1987). https://doi.org/10.1007/BF01009526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009526

Key words

Navigation