Wärme - und Stoffübertragung

, Volume 21, Issue 5, pp 291–296 | Cite as

Analysis of flow channeling near the wall in packed beds

  • S. M. White
  • C. L. Tien


The phenomenon of flow channeling in packed beds is investigated in the present analysis. A closed-form solution is obtained from the volume-averaged second-order momentum equation with the no-slip condition at the wall, using an exponential porosity distribution typical of packed beds. The predicted velocity profile shows the most important features of flow channeling: the sharp peak in the velocity near the wall, and the approach to the Darcy velocity far from the wall. The predictions are consistent with previous numerical results and with velocity measurements made downstream of a packed bed. The compact expression for the velocity given here is shown to be convenient for analyzing other packed-bed characteristics, such as the effective permeability of a finite-sized bed.


Permeability Porosity Velocity Profile Velocity Measurement Flow Channeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



physical length scale, particle diameter


ϰ/L2, Darcy number


Green's function


e−t, width of the fluid film inz variable


dimensional fluid film thickness


T/D, dimensionless film thickness


dimensional velocity


κ/μ)dP/dX, Darcy velocity used in scaling


U/U D , dimensionless velocity


approximate velocity profile


dimensional distance from the solid boundary


Y/D, dimensionless physical distance


e−y, transformed variable

Greek letters






fluid viscosity


square root of modified inverse Darcy number


dummy integration variable


wall shear



based on Darcy velocity


effective value


superficial or area-averaged value


evaluated at the wall

evaluated far from a solid boundary

Analyse der Strömungskanalisierung in der Nähe der Wand eines Festbetts


In der vorliegenden Analyse wird das Phänomen der Strömungskanalisierung im Festbett untersucht. Es gelang, eine geschlossene Lösung der volumetrisch gemittelten Impulsgleichung 2. Ordnung zu erzielen, wobei schlupflose Strömung an der Wand und eine exponentielle Porositätsverteilung, typisch für das Festbett, angenommen wurden. Das vorhergesagte Geschwindigkeitsprofil zeigt die wichtigsten Eigenschaften der Strömungskanalisierung: das scharf ausgebildete Maximum der Geschwindigkeit in Wandnähe und die Annäherung an die Darcy-Geschwindigkeit weit weg von der Wand. Die Vorhersagen sind konsistent mit früheren numerischen Ergebnissen und mit Geschwindigkeitsmessungen, die stromabwärts vom Festbett gemacht wurden. Die hier vorgestellten kompakten Formulierungen für die Geschwindigkeit erwiesen sich als bequeme Analysemethode für andere Charakteristiken eines Festbettes, wie z.B. die effektive Permeabilität eines endlichen Festbettes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roblee, L. H. S.; Baird, R. M.; Tierney, J. W.: Radial porosity variation in packed beds. AIChE Journal. 4 (1958) 460–464Google Scholar
  2. 2.
    Benenati, R. F.; Brosilow, C. B.: Void fraction distribution in beds of spheres. AIChE Journal. 8 (1962) 359–361Google Scholar
  3. 3.
    Stanek, V.; Eckert, V.: A study of the area porosity profiles in a bed of equal-diameter spheres confined by a plane. Chem. Eng. Sci. 34 (1979) 933–940Google Scholar
  4. 4.
    Morales, M.; Spinn, C. W.; Smith, J. M.: Velocities and effective thermal conductivities in packed beds. Ind. Eng. Chem. 43 (1951) 225–232Google Scholar
  5. 5.
    Schwartz, C. E.; Smith, J. M.: Flow distribution in packed beds. Ind. Eng. Chem. 45 (1953) 1209–1218Google Scholar
  6. 6.
    Price, J.: The distribution of fluid velocities for randomly packed beds of spheres. Mech. Chem. Eng. Trans. (Australia) 7 (1968) 77–14Google Scholar
  7. 7.
    Schertz, W. M.; Bischoff, K. B.: Thermal and material transport in non-isothermal packed beds. AIChE Journal. 4 (1969) 597–603Google Scholar
  8. 8.
    Chandrasekhara, B. C.; Vortmeyer, D.: Flow model for velocity distribution in fixed porous beds under isothermal conditions. Wärme-Stoffübertrag. 12 (1979) 105–111Google Scholar
  9. 9.
    Vortmeyer, D.; Schuster, J.: Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method. Chem. Eng. Sci. 38 (1983) 1691–1699Google Scholar
  10. 10.
    Vafai, K.: Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147 (1984) 233–259Google Scholar
  11. 11.
    Chandrasekhara, B. C.; Namboodiri, P. M. S.: Influence of variable permeability on combined free and forced convection about inclined surfaces in porous media. Int. J. Heat Mass Transfer. 28 (1985) 199–206Google Scholar
  12. 12.
    Vafai, K.; Tien, C. L.: Boundary and inertia effects of flow and heat transfer in porous media. Int. J. Heat Mass Transfer. 24 (1981) 195–203Google Scholar
  13. 13.
    Catton, I.: Natural convection heat transfer in porous media. In: Natural convection. S. Kakac, W. Aung and R. Viskanta (Eds.). New York: Hemisphere 1985, pp. 514–547Google Scholar
  14. 14.
    Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport phenomena. New York: Wiley 1960, pp. 199Google Scholar
  15. 15.
    Greenberg, M. D.: Application of Green's functions in science and engineering. Englewood Cliffs, New Jersey: Prentice-Hall 1971Google Scholar
  16. 16.
    Abramowitz, M.; Stegun, I.: Handbook of mathematical functions. New York: Dover 1972Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. M. White
    • 1
  • C. L. Tien
    • 1
  1. 1.Mechanical Engineering Dept.University of CaliforniaBerkeleyUSA

Personalised recommendations