Journal of Applied Electrochemistry

, Volume 18, Issue 2, pp 240–244 | Cite as

Oxidation of formic acid at a high surface area supported platinum modified by foreign metal adatoms

  • LJ. V. Minevski
  • R. R. Adžić


The anodic oxidation of formic acid was studied on platinum distributed in the form of small particles in a porous substrate modified by metal adatoms deposited at underpotentials. The rate of the reaction was greatly enhanced on the commercial catalyst Powercat 3000 (PC 3000). The hydrogen adsorption and the underpotential deposition of several metals at PC 3000 were shown to be dissimilar to that at smooth polycrystalline Pt. Steady-state and long-term experiments were performed to determine the stability of this electrode.


Oxidation Hydrogen Physical Chemistry Platinum Formic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Stonchart,Carbon 22 (1984) 423.Google Scholar
  2. [2]
    P. A. Attwood, B. D. McNicol and R. T. Short,J. Appl. Electrochem. 10 (1980) 213.Google Scholar
  3. [3]
    M. W. Breiter, in ‘Modern Aspects of Electrochemistry’, Vol. 10, edited by J. O'M. Bockris and B. E. Conway, Plenum Press, New York (1975).Google Scholar
  4. [4]
    A. Capon and R. Parsons,J. Electroanal. Chem. and Interfacial Electrochem. 44 (1973) 239.Google Scholar
  5. [5]
    Idem 45 (1975) 205.Google Scholar
  6. [6]
    R. R. Adžić, D. N. Simić, A. R. Despić and D. M. Dražić,J. Electroanal. Chem. 80 (1977) 81.Google Scholar
  7. [7]
    J. Giner,Electrochim. Acta 9 (1969) 63.Google Scholar
  8. [8]
    R. R. Adžić, Advances in Electrochemistry and Electrochemical Engineering’, Vol. 13, edited by Heinz-Gerischer, John Wiley and Sons, Inc. (1985).Google Scholar
  9. [9]
    R. R. Adžić, D. N. Simić, A. R. Despić and D. M. Dražić,J. Electroanal. Chem. 65 (1975) 587.Google Scholar
  10. [10]
    M. M. P. Janssen and J. Moolhyssen,Electrochim. Acta 21 (1976) 861, 869.Google Scholar
  11. [11]
    T. Kessler, A. M. Castro Luna, W. E. Triaca and A. J. Arvia,J. Appl. Electrochem. 16 (1986) 693.Google Scholar
  12. [12]
    K. J. Cathro,J. Electrochem. Technol. 5 (1967) 441.Google Scholar
  13. [13]
    Yu. B. Vassiliev, V. S. Bagotsky, N. J. Osetrova and A. A. Mikhailova,J. Electroanal. Chem. 61 (1975) 117.Google Scholar
  14. [14]
    M. Watanabe and S. Motoo,69 (1976) 429.Google Scholar
  15. [15]
    A. Bewick, B. Baden, C. Lamy and K. Kunimatsu,121 (1981) 343.Google Scholar
  16. [16]
    O. Walter, J. Willsau and J. Heitbaum,J. Electroanal. Soc. 132 (1985) 1635.Google Scholar
  17. [17]
    M. V. Breiter,Electrochim. Acta 8 (1963) 447, 457.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • LJ. V. Minevski
    • 1
  • R. R. Adžić
    • 1
  1. 1.Institute of ElectrochemistryICTM and Center for Multidisciplinary StudiesBelgradeYugoslavia

Personalised recommendations