Journal of Statistical Physics

, Volume 41, Issue 3–4, pp 685–708 | Cite as

One-dimensional rigorous hole theory of fluids: Internally constrained ensembles

  • Zeev Elkoshi
  • Howard Reiss
  • Audrey Dell Hammerich


A “hole” in a fluid is specified in a well-defined manner. The concentration of “holes” is a thermodynamic property of the fluid and we derive this concentration in three different ensembles for a one-dimensional fluid of hard rods. The thermodynamics of these rigorously defined holes is developed, and the properties of holes are explored. The ensemble in which the concentration of holes is maintained fixed exhibits dramatic properties. Finally, pair correlation functions for hard rods in the various ensembles are computed. Contrary to a frequently made assumption, the equilibrium number of holes is found to never be proportional to the probability of finding a single hole in the fluid. Constraining the concentration of holes as well as the density leads to dramatic structural effects prominently displayed by the pair correlation function. The ensemble in which the concentration of holes is fixed is an example of an “internally constrained” metastable system.

Key words

Exact hole theory pair correlation function hard rods one-dimensional systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Cernuschi and H. Eyring,J. Chem. Phys. 7:547 (1939).Google Scholar
  2. 2.
    H. M. Peek and T. L. Hill,J. Chem. Phys. 18:1252 (1950).Google Scholar
  3. 3.
    J. S. Rowlinson and C. F. Curtiss,J. Chem. Phys. 19:1519 (1951).Google Scholar
  4. 4.
    M. Kurata,Busseiron Kenkyu 39:77 (1951).Google Scholar
  5. 5.
    I. Prigogine,The Molecular Theory of Solutions (North-Holland, Amsterdam, 1957), Chap. VII.Google Scholar
  6. 6.
    H. Eyring and M. S. Jhon,Significant Liquid Structures (John Wiley and Sons, New York, 1969), Chap. 3.Google Scholar
  7. 7.
    B. J. Alder and W. G. Hoover, inPhysics of Simple Liquids, H. N. V. Temperly, J. S. Rowlinson, and G. S. Rushbrooke, eds. (North-Holland, Amsterdam, 1968), Chap. 4.Google Scholar
  8. 8.
    D. W. Jepson,J. Math. Phys. 6:405 (1965).Google Scholar
  9. 9.
    J. L. Lebowitz and J. K. Percus,Phys. Rev. 155:122 (1967).Google Scholar
  10. 10.
    J. L. Lebowitz, J. K. Percus, and J. Sykes,Phys. Rev. 171:224 (1968).Google Scholar
  11. 11.
    M. Aizenman, J. Lebowitz, and J. Marro,J. Stat. Phys. 18:179 (1978).Google Scholar
  12. 12.
    S. F. Edwards,Disc. Faraday Soc. 49:43 (1970);Proc. Phys. Soc. (London) 91:513 (1967);J. Phys. A1:15 (1968);Proc. Phys. Soc. (London) 92:9 (1967).Google Scholar
  13. 13.
    K. F. Freed, inAdvances in Chemical Physics, Vol. XXII, I. Prigogine and S. A. Rice, eds. (John Wiley and Sons, New York, 1972).Google Scholar
  14. 14.
    E. Helfand, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 34:1037 (1961).Google Scholar
  15. 15.
    H. Reiss,Ber. Bunsen-Ges. Phys. Chem. 79:943 (1975).Google Scholar
  16. 16.
    H. Reiss and R. V. Casberg,J. Chem. Phys. 61:1107 (1974); Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood,J. Chem. Phys. 21:1098 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Zeev Elkoshi
    • 1
  • Howard Reiss
    • 1
  • Audrey Dell Hammerich
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaLos Angeles

Personalised recommendations