Skip to main content
Log in

Tail shortening by discrete hydrodynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A discrete formulation of hydrodynamics was recently introduced, whose most important feature is that it is exactly renormalizable. Previous numerical work has found that it provides a more efficient and rapidly convergent method for calculating transport coefficients than the usual Green-Kubo method. The latter's convergence difficulties are due to the well-known “long-time tail” of the time correlation function which must be integrated over time. The purpose of the present paper is to present additional evidence that these difficulties are really absent in the discrete equation of motion approach. The “memory” terms in the equation of motion are calculated accurately, and shown to decay much more rapidly with time than the equilibrium time correlations do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. Visscher,J. Stat. Phys. 18:59 (1978).

    Google Scholar 

  2. P. B. Visscher,Physica 97A:410 (1979).

    Google Scholar 

  3. K. G. Wilson and J. Kogut,Phys. Rept. 12C:75 (1974).

    Google Scholar 

  4. Th. Niemeijer and J. M. J. van Leeuwen, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic, New York, 1976).

    Google Scholar 

  5. D. S. Gaunt and A. J. Guttmann, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic, New York, 1974).

    Google Scholar 

  6. D. L. Hunter and G. A. Baker Jr.,Phys. Rev. B 7:3346 (1973).

    Google Scholar 

  7. M. H. Ernst, L. K. Haines, and J. R. Dorfman,Rev. Mod. Phys. 41:296 (1969).

    Google Scholar 

  8. B. J. Atder and T. E. Wainwright,Phys. Rev. A 1:18 (1970).

    Google Scholar 

  9. B. J. Berne and Dieter Forster,Ann. Rev. Phys. Chem. 22:564 (1971).

    Google Scholar 

  10. M. S. Green,J. Chem. Phys. 20:1281 (1952);22:398 (1954).

    Google Scholar 

  11. S. Begum and P. B. Visscher, “Transport Coefficient Calculation by Discrete Hydrodynamics,” preprint (University of Alabama).

  12. P. B. Visscher, “Exact Fixed Points in Discrete Hydrodynamics,”J. Stat. Phys. 25:211 (1981).

    Google Scholar 

  13. P. B. Visscher, “Critical Fixed Points in Discrete Hydrodynamics,”Physica 108A:153 (1981).

    Google Scholar 

  14. S. Begum and P. B. Visscher,J. Stat. Phys. 20:641 (1979).

    Google Scholar 

  15. P. B. Visscher,J. Chem. Phys. 68:750 (1978).

    Google Scholar 

  16. N. R. Draper and H. Smith,Applied Regression Analysis (Wiley, New York, 1966); R. F. Gunst and R. L. Mason,Regression Analysis and its Application (Dekker, New York, 1980).

    Google Scholar 

  17. P. B. Visscher,J. Stat. Phys. 20:629 (1979).

    Google Scholar 

  18. L. Verlet,Phys. Rev. 159:98 (1967).

    Google Scholar 

  19. W. T. Ashurst and W. G. Hoover,Phys. Rev. A 11:658 (1975).

    Google Scholar 

  20. D. Levesque, L. Verlet, and J. Kurkujarvi,Phys. Rev. A 7:1690 (1973).

    Google Scholar 

  21. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen,J. Stat. Phys. 15:7 (1976);Phys. Rev. A 4:2055 (1971).

    Google Scholar 

  22. N. Corngold,Phys. Rev. A 6:1570 (1972).

    Google Scholar 

  23. A. Z. Akcasu and E. Daniels,Phys. Rev. A 2:962 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefer, J., Visscher, P.B. Tail shortening by discrete hydrodynamics. J Stat Phys 27, 389–405 (1982). https://doi.org/10.1007/BF01008945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008945

Key words

Navigation