Advertisement

Journal of Statistical Physics

, Volume 27, Issue 2, pp 317–338 | Cite as

On the expansion of linear response functions—Application to electrical conductivity of disordered metals

  • Shaul Mukamel
Articles

Abstract

Two expansions for linear response functions which are based on different time-ordering prescriptions are presented. The expansions are associated with the derivation of reduced equations of motion (REM) which are nonlocal and local in time, respectively. Both expansions are formally exact and are written in a closed form but they may yield very different results once approximations are made. Therefore they are expected to be useful for different statistical properties of the system. The time-local expansion has certain formal advantages over the nonlocal one, which makes it applicable to a wide class of problems. In the weak-coupling Markovian limit the two expansions are identical. Application is made to disordered metals where explicit expressions are derived for the electrical conductivity using both reduction schemes.

Key words

Linear response transport disordered metals electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    R. Kubo,J. Phys. Soc. Jpn. 12:570 (1957);Google Scholar
  2. 1.(b)
    R. Kubo,Lect. Theor. Phys. 1:120 (1958).Google Scholar
  3. 2.
    R. Zwanzig,Ann. Rev. Phys. Chem. 16:67 (1965).Google Scholar
  4. 3.
    L. P. Kadanoff and P. C. Martin,Ann. Phys. (N.Y.) 24:419 (1963).Google Scholar
  5. 4.
    P. C. Martin,Measurements and Correlation Functions (Gordon and Breach, New York (1968).Google Scholar
  6. 5.
    I. Oppenheim, inTopics in Statistical Mechanics and Biophysics, R. A. Piccirelli ed. (A.I.P., New York, 1976), p. 111.Google Scholar
  7. 6.
    R. Zwanzig,Physica 30:1109 (1964).Google Scholar
  8. 7.
    M. Tokuyama and H. Mori,Progr. Theor. Phys. 55:411 (1976).Google Scholar
  9. 8.
    S. Mukamel, I. Oppenheim, and J. Ross,Phys. Rev. A 17:1988 (1978).Google Scholar
  10. 9.
    S. Mixkamel,Chem. Phys. 37:33 (1979): S. Mukamel and D. Grimbert,Opt. Comm. (in press).Google Scholar
  11. 10.
    S. Mukamel,J. Chem. Phys. 70:5834 (1979);72:2012 (1979);Adv. Chem. Phys. 47:509 (1981);Phys. Rev. B (in press).Google Scholar
  12. 11.
    R. F. Fox,J. Stat. Phys. 16:259 (1977).Google Scholar
  13. 12.
    F. Shibata, Y. Takahashi, and N. Hashitsume,J. Stat. Phys. 17:171 (1977).Google Scholar
  14. 13.
    P. W. Anderson,Phys. Rev. 86:694 (1952); E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan,Phys. Rev. Lett. 42:673 (1979).Google Scholar
  15. 14.
    N. Mott,Metal Insulator Transition (Taylor and Francis, New York, 1974).Google Scholar
  16. 15.
    J. M. Ziman,Models of Disorder (Cambridge, London, 1979).Google Scholar
  17. 16.(a)
    W. Gotze and P. Wölfle,Phys. Rev. B 6:1226 (1972);Google Scholar
  18. 16.(b)
    D. Vollhardt and P. Wölfle,Phys. Rev. Lett. 45:842 (1980).Google Scholar
  19. 17.
    F. J. Wegner,Z. Phys. B 25:327 (1976);36:209 (1980).Google Scholar
  20. 18.
    D. Pines and P. Noziéres,The Theory of Quantum Liquids (Benjamin, New York, 1966).Google Scholar
  21. 19.
    O. Madelung,Introduction to Solid State Theory (Springer Verlag, Berlin, 1978).Google Scholar
  22. 20.
    E. N. Economou,Green's Functions in Quantum Physics (Springer Verlag, Berlin, 1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Shaul Mukamel
    • 1
    • 2
  1. 1.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Chemistry and Quantum InstituteRice UniversityHouston

Personalised recommendations