Journal of Applied Electrochemistry

, Volume 20, Issue 4, pp 651–655 | Cite as

Characterization and use of aqueous caesium chloride as an ultra-concentrated salt bridge

  • P. R. Mussini
  • F. D'Andrea
  • A. Galli
  • P. Longhi
  • S. Rondinini


Five strong aqueous binary electrolytes — one symmetrical (CsCl) and four unsymmetrical (Li2SO4, K2SO4, Rb2SO4, Cs2SO4) — have been examined, for possible use as salt bridges for the minimization of liquid junction potentials (EL), up to the highest concentrations practicable, by the method of homoionic transference cells: Pt−Ir | Cl2 | CsCl (m2) ‖ CsCl (m1) | Cl2 | Pt−Ir and Hg | Hg2Cl2 | CsCl (m2) ‖ CsCl (m1) | Hg2Cl2 | Hg for CsCl, and Hg | Hg2SO4 | Me2SO4 (m2) ‖ Me2SO4 (m1) | Hg2SO4 | Hg for the Me2SO4 sulphates where Me=Li, K, Rb and Cs. CsCl, K2SO4, Rb2SO4, and Cs2SO4, prove to belong to the class obeying close equality of transference numbers for their ions, that is,t+= |t|=0.5, over the whole concentration range (namely, from infinite dilution up to saturation). This result qualifies aqueous CsCl as an unrivalled salt bridge, whose equitransference is obeyed more stringently than any other salt. This is now demonstrated experimentally over the whole molality range, the saturation molality being as high as 11.30 mol kg−1 at 25°C. The observed propertyt+=|t|=0.5 excludes K2SO4, Rb2SO4, and Cs2SO4, as possible salt bridges because the equitransference conditions for minimization ofEL's are τ+ = |τ| = l/(z+ + |z|) = 0.333, i.e.,t+=0.333 andt=2t+=0.667. Finally, Li2SO4, though behaving quite differently from the other three sulphates studied, does not sufficiently approach the required conditions, contrary to what one might have hoped from its known infinite-dilution transference numbers.


Sulphate Chloride Rb2SO4 Me2SO4 CsCl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. R. Mussini, P. Longhi, T. Mussini and S. Rondinini,J. Appl. Electrochem. 20 (1990), in this issue.Google Scholar
  2. [2]
    T. Mussini,J. Chem. Education 66 (1988) 242.Google Scholar
  3. [3]
    P. Longhi, P. R. Mussini and S. Rondinini,Ann. Chim. (Rome) 77 (1987) 533.Google Scholar
  4. [4]
    R. G. Bates, ‘Determination of pH — Theory and Practice’, 2nd edn., Wiley, New York (1973) p. 312.Google Scholar
  5. [5]
    T. Mussini, P. Longhi, P. R. Mussini and S. Rondinini,Proc. 10th IFCC Symposium on Methodology and Clinical Applications of Ion Selective Electrodes, vol. 10, Utrecht (1989) p. 287.Google Scholar
  6. [6]
    R. H. Stokes and B. J. Levien,J. Amer. Chem. Soc. 68 (1946) 333.Google Scholar
  7. [7]
    R. A. Robinson and R. H. Stokes, ‘Electrolyte Solutions’, 2nd rev. edn., Butterworths, London (1965) p. 111.Google Scholar
  8. [8]
    F. King and M. Spiro,J. Solution Chem. 12 (1983) 65.Google Scholar
  9. [9]
    G. Faita, P. Longhi and T. Mussini,J. Electrochem. Soc. 114 (1967) 340.Google Scholar
  10. [10]
    S. Rondinini, A. Cavadore, P. Longhi and T. Mussini,J. Chem. Thermodynamics 20 (1988) 711.Google Scholar
  11. [11]
    D. J. G. Ives and G. J. Janz, ‘Reference Electrodes —Theory and Practice’, Academic Press, New York (1961) pp. 135–7.Google Scholar
  12. [12]
    T. Mussini and A. Pagella,J. Chem. Eng. Data 16 (1971) 49.Google Scholar
  13. [13]
    R. H. Stokes,J. Amer. Chem. Soc. 7 (1954) 1988.Google Scholar
  14. [14]
    Ref. pp. 155–60.Google Scholar
  15. [15]
    H. S. Harned and B. B. Owen, ‘The Physical Chemistry of Electrolytic Solutions’, 3rd edn, Reinhold, New York (1958) p. 510.Google Scholar
  16. [16]
    Ref. pp. 463–5.Google Scholar
  17. [17]
    D. E. Goldsack, R. Franchetto and A. Anttila Franchetto,Can. J. Chem. 54 (1976) 2953.Google Scholar
  18. [18]
    ‘SAS User's Guide: Statistics’, Version 5 Edition. SAS institute Inc., Cary N.C. (1985) pp. 575, 655.Google Scholar
  19. [19]
    A. Seidell, ‘Solubilities of Inorganic and Metal-Organic Còmpounds’, Vol. 1, revised by W. F. Linke, American Chemical Society, Washington DC (1958) p. 880.Google Scholar
  20. [20]
    S. Rondinini, P. Longhi, P. R. Mussini and T. Mussini,Proc. 10th IFCC Symposium on Methodology and Clinical Applications of Ion Selective Electrodes, vol. 10, Utrecht (1989) p. 139.Google Scholar
  21. [21]
    R. Cavaliere, P. Longhi, T. Mussini and S. Neglia,Gazz. Chim. Ital. 109 (1979) 399.Google Scholar
  22. [22]
    R. Cavaliere, P. Longhi, T. Mussini and S. Neglia,Gazz. Chim. Ital. 109 (1979) 495.Google Scholar
  23. [23]
    A. M. Azzam, Thesis, University of London, No. 441 (1949);Z. Elektrochem. 58 (1954) 889.Google Scholar
  24. [24]
    Ref. p. 225.Google Scholar
  25. [25]
    H. S. Taylor,J. Chem. Phys. 6 (1938) 331.Google Scholar
  26. [26]
    R. G. Bates, B. R. Staples and R. A. Robinson,Anal. Chem. 42 (1970) 867.Google Scholar
  27. [27]
    R. H. Stokes and R. A. Robinson,J. Amer. Chem. Soc. 70 (1948) 1870.Google Scholar
  28. [28]
    R. H. Stokes and R. A. Robinson,J. Solution Chem. 2 (1973) 173.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • P. R. Mussini
    • 1
  • F. D'Andrea
    • 1
  • A. Galli
    • 1
  • P. Longhi
    • 1
  • S. Rondinini
    • 1
  1. 1.Department of Physical Chemistry and ElectrochemistryUniversity of MilanMilanoItaly

Personalised recommendations