Advertisement

Journal of Statistical Physics

, Volume 4, Issue 2–3, pp 217–225 | Cite as

On reformulating quantum mechanics and stochastic theory

  • J. Ogunlana
Articles
  • 39 Downloads

Abstract

A stochastic theory approach is used to formulate the theory of quantum mechanical motion. Apart from giving a unifying point of view to quantum mechanics and stochastic theory, the new formulation is not limited to forces derivable from a potential. A nonlinear dynamical law is deduced in contradistinction to previous works in whichad hoc linear laws are postulated.

Key words

Nonlinear quantum and classical mechanics stochastic motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955) (Translated by R. T. Beyer).Google Scholar
  2. 2.
    J. Schwinger, The algebra of microscopic measurement,Proc. Natl. Acad. Sci. 45:1542 (1959);46:257 (1960);46:570 (1960).Google Scholar
  3. 3.
    R. Haag and D. Kastler, An algebraic approach to quantum field theory.J. Math. Phys. 5:848 (1964).Google Scholar
  4. 4.
    A. N. Kolmogorov,Foundations of Probability Theory (Chelsea Publ. Co., New York, 1950) (Translated by N. Morrison).Google Scholar
  5. 5.
    G. W. Mackey,Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).Google Scholar
  6. 6.
    M. Nakamura and T. Turumaru, Expectations in an operator algebra,Tohoku Math. J. 6:177 (1954).Google Scholar
  7. 7.
    K. Urbanik, Joint probability distribution of observables in quantum mechanics,Studia Math. 21:117 (1961).Google Scholar
  8. 8.
    V. S. Varadarajan, Probability in physics and a theorem on simultaneous observability,Commun. Pure Appl. Math. 15:189 (1962).Google Scholar
  9. 9.
    E. Nelson,Phys. Rev. 150:1079 (1966).Google Scholar
  10. 10.
    L. dela Pena-Auerbach,Phys. Letters 27A(9):549 (1968).Google Scholar
  11. 11.
    S. Chandrasekhar,Rev. Mod. Phys. 15:1 (1943); reprinted inSelected Papers in Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954).Google Scholar
  12. 12.
    Ming Cheng Wang and G. E. Uhlenbeck,Rev. Mod. Phys. 17:323 (1945): reprinted inSelected Papers in Noise and Stochastic Processes, N. Wax, ed., (Dover, New York, 1954).Google Scholar
  13. 13.
    G. G. Comisar,Phys. Rev. 138A(58):1332 (1965).Google Scholar
  14. 14.
    L. F. Favella.Ann. Inst. Henri Poincaré VII(1):77 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • J. Ogunlana
    • 1
  1. 1.Office of Research ServicesUniversity of CaliforniaBerkeley

Personalised recommendations