Advertisement

Journal of Statistical Physics

, Volume 5, Issue 1–2, pp 83–97 | Cite as

Kinetic equations without “memory” for the time-displaced correlation functions

  • A. R. Altenberger
  • J. Stecki
Articles

Abstract

The relations between the kinetic equations with and without convolution in time are discussed on the basis of the kinetic equation for the Van Hove self-correlation function. Formal equivalence of both the equations is shown, and approximate scattering operators for the dilute-gas case and for the Brownian particle are considered.

Key words

Time correlation function non-Markovian kinetic equation distribution function collision integral memory function projection operator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. D. Cohen, inFundamental Problems in Statistical Mechanics, Vol. II, ed. E. G. D. Cohen, North-Holland Publ. Co., Amsterdam (1968).Google Scholar
  2. 2.
    M. H. Ernst,Lectures in Theoretical Physics, Vol. 9C, Gordon and Breach Science Publishers, New York (1967).Google Scholar
  3. 3.
    M. H. Ernst, E. G. D. Cohen, and J. R. Dorfman,Rev. Mod. Phys. 41:296 (1969).Google Scholar
  4. 4.
    J. R. Dorfman and E. G. D. Cohen,J. Math. Phys. 8:282 (1967).Google Scholar
  5. 5.
    I. Prigogine and P. Résibois,Physica 27:629 (1961).Google Scholar
  6. 6.
    I. Prigogine,Nonequilibrium Statistical Mechanics, Wiley, New York (1962), Chapter 11.Google Scholar
  7. 7.
    R. Balescu,Physica 38:98 (1968);42:464 (1969).Google Scholar
  8. 8.
    R. Zwanzig,J. Chem. Phys. 33:338 (1960).Google Scholar
  9. 9.
    A. Fuliński,Physics Letters 24A:63 (1967);25A:13 (1967).Google Scholar
  10. 10.
    A. Fuliński and W. J. Kramarczyk,Physica 39:575 (1968).Google Scholar
  11. 11.
    W. J. Kramarczyk and K. Voss,Ann. Physik 21:167 (1968).Google Scholar
  12. 12.
    J. M. J. van Leeuwen and S. Yip,Phys. Rev. 139:A1138 (1965).Google Scholar
  13. 13.
    J. Stecki and R. Wojnar,Chem. Phys. Letters 2:343 (1968).Google Scholar
  14. 14.
    L. Blum and J. L. Lebowitz,Phys. Rev. 185:273 (1969).Google Scholar
  15. 15.
    A. Z. Akcasu, N. Corngold, and J. J. Duderstadt,Phys. Fluids 13:2213 (1970).Google Scholar
  16. 16.
    J. L. Lebowitz and E. Rubin,Phys. Rev. 131:2381 (1963).Google Scholar
  17. 17.
    P. Résibois and H. T. Davis,Physica 30:1077 (1964).Google Scholar
  18. 18.
    J. L. Lebowitz and P. Résibois,Phys. Rev. 139:A1101 (1965).Google Scholar
  19. 19.
    R. L. Liboff,Introduction to the Theory of Kinetic Equations, Wiley, New York (1969), Chapter IV.Google Scholar
  20. 20.
    J. Stecki and M. Narbutowicz, to be published.Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • A. R. Altenberger
    • 1
  • J. Stecki
    • 1
  1. 1.Institute of Physical Chemistry of the Polish Academy of SciencesWarsawPoland

Personalised recommendations