Journal of Statistical Physics

, Volume 39, Issue 5–6, pp 493–499 | Cite as

Magnetic field propagation in a stellar dynamo

  • Gary A. Glatzmaier
Article

Abstract

Numerical simulations of stellar dynamos are reviewed. Dynamic dynamo models solve the nonlinear, three-dimensional, time-dependent, magnetohydrodynamic equations for the convective velocity, the thermodynamic variables, and the generated magnetic field in a rotating, spherical shell of ionized gas. When the dynamo operates in the convection zone, the simulated magnetic fields propagate away from the equator in the opposite direction inferred from the solar butterfly diagram. When simulated at the base of the convection zone, the fields propagate in the right direction at roughly the right speed. However, owing to the numerical difficulty, a full magnetic cycle has not been simulated in this region. As a result, it is still uncertain where and how the solar dynamo operates.

Key words

Numerical simulations stellar dynamos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Hale,Nature 113:105 (1924).Google Scholar
  2. 2.
    H. W. Babcock,Astrophys. J. 133:572 (1961).Google Scholar
  3. 3.
    H. Yoshimura,Solar Phys. 47:581 (1976).Google Scholar
  4. 4.
    E. N. Parker,Astrophys. J. 122:293 (1955).Google Scholar
  5. 5.
    A. M. Soward and P. H. Roberts,Magnetohydrodynamics 12:1 (1977).Google Scholar
  6. 6.
    H. K. Moffatt,Magnetic Field Generation in Electrically Conducting Fluids (Univ. Press, Cambridge, 1978).Google Scholar
  7. 7.
    E. N. Parker,Cosmical Magnetic Fields (Clarendon Press, Oxford, 1979).Google Scholar
  8. 8.
    M. Stix,Solar Phys. 74:79 (1981).Google Scholar
  9. 9.
    F. Krause and K.-H. Radler,Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon, Oxford, 1981).Google Scholar
  10. 10.
    P. A. Gilman and J. Miller,Astrophys. J. Suppl. 46:211 (1981).Google Scholar
  11. 11.
    P. A. Gilman,Astrophys. J. Suppl. 53:243 (1983).Google Scholar
  12. 12.
    G. A. Glatzmaier,J. Comp. Phys. 55:461 (1984).Google Scholar
  13. 13.
    G. A. Glatzmaier,Astrophys. J. 291:300 (1985).Google Scholar
  14. 14.
    R. Howard, J. M. Adkins, J. E. Boyden, T. A. Cragg, T. S. Gregory, B. J. LaBonte, S. P. Padilla, and L. Webster,Solar Phys. 83:321 (1983).Google Scholar
  15. 15.
    T. L. Duvall Jr., W. A. Dziembowski, P. R. Goode, D. O. Gough, J. W. Harvey, and J. W. Leibacher,Nature 310:22 (1984).Google Scholar
  16. 16.
    T. L. Duvall Jr. and J. W. Harvey,Nature 310:19 (1984).Google Scholar
  17. 17.
    E. N. Parker,Astrophys. J. 198:205 (1975).Google Scholar
  18. 18.
    B. R. Durney,Astrophys. J. 204:589 (1976).Google Scholar
  19. 19.
    D. J. Galloway and N. O. Weiss,Astrophys. J. 243:945 (1981).Google Scholar
  20. 20.
    G. A. Glatzmaier,Geophys. Astrophys. Fluid Dyn. (in press, 1985).Google Scholar
  21. 21.
    J. O. Stenflo, inBasic Mechanisms of Solar Activity, V. Bumba and J. Kleczek, eds. (Reidel, Dordrecht, 1976), pp. 69–99.Google Scholar
  22. 22.
    H. B. Snodgrass,Astrophys. J. 270:288 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Gary A. Glatzmaier
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos Alamos

Personalised recommendations