Journal of Statistical Physics

, Volume 29, Issue 1, pp 117–127 | Cite as

About the poor decay of certain cross-correlation functions in the statistical mechanics of phase transitions in the static and dynamical regime

  • Manfred Requardt
Articles

Abstract

We introduce a method to prove poor decay of certain cross-correlation functions which are closely related to the phase transition. The methods apply both to equal and nonequal times, which gives access to the dynamical regime. We establish a criterion which displays openly what happens when the Goldstone picture breaks down. Since no rudiments of translation invariance are needed the treatment covers phases in coexistence like, e.g., liquid-gas interfaces and completely inhomogeneous systems. Furthermore a perhaps surprising connection with the breaking of time reflection invariance of the equilibrium state is established.

Key words

Phase transitions cluster properties phase coexistence time reflection invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogoliubov,Phys. Abh. S. U. 6:1, 113, 229 (1962).Google Scholar
  2. 2.
    H. Wagner,Z. Phys. 195:273 (1966).Google Scholar
  3. 3.
    N. D. Mermin and H. Wagner,Phys. Rev. Lett. 17:1133 (1966).Google Scholar
  4. 4.
    P. C. Hohenberg,Phys. Rev. 158:383 (1966).Google Scholar
  5. 5.
    P. A. Martin, preprint, 1981, EPF Lausanne (to appear inNuov. Cim.). Google Scholar
  6. 6.
    M. Requardt,J. Phys. A 13:1769 (1980).Google Scholar
  7. 7.
    M. Requardt, unpublished material.Google Scholar
  8. 8.
    N. D. Mermin,J. Math. Phys. 8:1061 (1967).Google Scholar
  9. 9.
    M. Requardt,Z. Phys. B 36:187 (1979).Google Scholar
  10. 10.
    M. Requardt, preprint, 1981, Göttingen.Google Scholar
  11. 11.
    C. Gruber, P. A. Martin, and C. Oguey,Commun. Math. Phys. 84:55 (1982).Google Scholar
  12. 12.
    R. V. Lange,Phys. Rev. Lett. 14:3 (1965).Google Scholar
  13. 13.
    O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanicssi (Springer, New York, 1981).Google Scholar
  14. 14.
    H. Narnhofer, preprint, Wien, August 1981.Google Scholar
  15. 15.
    L. Landau, J. F. Perez, and W. F. Wreszinski, (to appear inJ. Stat. Phys. 1982).Google Scholar
  16. 16.
    D. Kastler, D. W. Robinson, and J. A. Swieca,Commun. Math. Phys. 2:108 (1966).Google Scholar
  17. 17.
    W. Thirring,Quantenmech. grosser Syst., Springer, New York (1980).Google Scholar
  18. 18.
    H. Kunz,Ann. Phys. N.Y.85:305 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Manfred Requardt
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenWest Germany

Personalised recommendations