Virchows Archiv

, Volume 430, Issue 2, pp 149–153 | Cite as

Regeneration processes in human myocardium after acute ischaemia —quantitative determination of DNA, cell number and collagen content

  • Claus-Peter Adler
  • Michael Neuburger
  • Georg W. Herget
  • Dietmar Mühlbach
Original Article


We examined and compared 22 human hearts (6 normal hearts, 4 with hypertrophic cardiomyopathy and 12 after acute ischaemia) for their DNA and collagen content and their cell number. A positive correlation between total heart weight and DNA content was demonstrated in all hearts. The relative DNA content decreased and the rate of polyploidy increased in the infarcted and hypertrophied hearts. An aneuploid DNA content was found only in the infarcted hearts. Both hypertrophied and infarcted hearts showed a significantly higher collagen content than did the normal hearts. There was a positive correlation between collagen content and total heart weight in the hypertrophied hearts but not in the infarcted hearts. In the infarcted hearts, the increase in the relative collagen content in the left ventricle was significantly larger than that in the right ventricle. Heart cell number was higher than normal in some hearts with acute ischaemia, which was possibly a sign of compensatory regeneration of heart cells in hearts damaged by ischaemia.

Key words

Collagen DNA content Cell number Myocardial infarction Polyploidization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler CP (1975) Cell number in human heart in atrophy, hypertrophy and under the influence of cytostatica. Recent Adv Stud Cardiac Struct Metab 9:343–355Google Scholar
  2. 2.
    Adler CP (1986) Histochemically determinable changes in cardiac insufficiency and their functional significance. Basic Res Cardiol [Suppl] 81:179–192Google Scholar
  3. 3.
    Adler CP, Ringlage RC, Stolze HH (1982) Ein kybernetisches Modell zur Erklärung der physiologischen Polyploidisierung im menschlichen Myokard. Verh Dtsch Ges Pathol 66:610Google Scholar
  4. 4.
    Böhm N (1968) Einfluß der Fixierung und der Säurekonzentration auf die Feulgen-Hydrolyse bei 28°C. Histochemie 14:201–211Google Scholar
  5. 5.
    Brodsky VY (1986) Polyploidization of cardiac myocytes as a programmed vent of ontogenesis. Ontogenez 17:138–145Google Scholar
  6. 6.
    Brodsky VY, Uryvaeva IV (1985) Genome multiplication in growth and development. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Brodsky VY, Chernyaer AL, Vasilyeva IA (1991) Variability of the cardiomyocyte ploidy in normal human hearts. Virchows Arch [B] 61:289–294Google Scholar
  8. 8.
    Brodsky VY, Sarkisov DS, Arefyeva AM, Panova NW (1993) DNA and protein relations in cardiomyocytes. Growth reserve in cardiac muscle. Eur J Histochem 37:199–206Google Scholar
  9. 9.
    Brodsky VY, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424:429–435Google Scholar
  10. 10.
    Burton K (1956) A study of the conditions and mechanism of the diphenylamine rection for the colorimetric estimation of DNA. Biochem J 62:315–323Google Scholar
  11. 11.
    Capasso JM, Bruno S, Cheng W, Li P, Rodgers R, Darzynkiewicz Z, Anersa P (1992) Ventricular loading is coupled with DNA synthesis in adult cardiac myocytes after acute and chronic myocardial infarction in rats. Circ Res 71:1379–1389Google Scholar
  12. 12.
    Dische Z (1930) Über einige neue charakteristische Farbreaktionen der Thymo-nukleinsäuren und eine Mikromethode zur Bestimmung derselben in tierischen Organen mit Hilfe dieser Reaktionen. Mikrochemie 8:4–32Google Scholar
  13. 13.
    Gerdes AM, Liu Z, Zimmer HG (1994) Changes in nuclear size of cardiac myocytes during the development and progression of hypertrophy in rats. Cardioscience 5:203–208Google Scholar
  14. 14.
    Klinge O (1967) Proliferation and regeneration of myocardium. Z Zellforsch 80:488–517Google Scholar
  15. 15.
    Kononova VA (1982) Intensity of RNA-synthesis and the DNA content in the myocardium of newborn rats during adaption to altitude hypoxia. Biull Eksp Biol Med 93:100–102Google Scholar
  16. 16.
    Linzbach AJ (1975) Quantitative Biologie und Morphologie des Wachstums einschließlich Hypertrophie und Riesenzellen. (Handbuch der allgemeinen Pathologie, VI/1) Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Luciani M, Rocco M, Pizzolitto S, Antoci B (1991) Does the analysis of DNA in myocytes have meaning? Pathologica 83 (1085):289–294Google Scholar
  18. 18.
    Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural and endocrine depence. Circulation 83:13–25Google Scholar
  19. 19.
    Muller G, Moubayed AP (1977) Quantitative morphology of coronary arteriosclerosis and coronary insufficiency in heart hypertrophy. Basic Res Cardiol 72:464–478Google Scholar
  20. 20.
    Müller W (1883) Die Massenverhältnisse des menschlichen Herzen. Voss, HamburgGoogle Scholar
  21. 21.
    Neumann RE, Logan MA (1950) The determination of bydroxyproline. J Biol Chem 184:299–306Google Scholar
  22. 22.
    Sandritter W, Adler CP (1978) Polyploidization of heart muscle nuclei as a prerequisite for heart growth and numerical hyperplasia in heart hypertrophy. Recent Adv Cardiac Struct Metab 12:115–127Google Scholar
  23. 23.
    Sandritter W, Scomazzoni G (1964) DNA content and dry weight of normal and hypertrophic heart muscle fibres. Nature 202:100–101Google Scholar
  24. 24.
    Stegemann H (1958) Mikrobestimmung von Hydroxyprolin mit Chloramin-T undp-Dimethylaminobenzaldehyd. Hoppe Seylers Z Physiol Chem 310:41–45Google Scholar
  25. 25.
    Van der Laarse A, Bloys van Treslong CH, Vliegen HW, Ricciardi L (1990) Relation between ventricular DNA content and number of myocytes and non-myocytes in hearts of normotensive and spontaneously hypertensive rats. Cardiovasc Res 21:223–229Google Scholar
  26. 26.
    Vfegen HW, Bruschke AV, Van der Laarse A (1990) Different response of cellular DNA content to cardiac hypertrophy in human and rat heart myocytes. Comp Biochem Physiol [A] 95:109–114Google Scholar
  27. 27.
    Wada A, Inui Y, Fushimi H, Takemura K, Shibata N, Onishi S (1980) An approach to the genesis of idiopathic cardiomyopathy. Adv Myocardiol 2:259–268Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Claus-Peter Adler
    • 1
  • Michael Neuburger
    • 1
  • Georg W. Herget
    • 1
  • Dietmar Mühlbach
    • 1
  1. 1.Institute of Pathology, Ludwig-Asehoff-HausUniversity of Freiburg im BreisgauFreiburg im BreisgauGermany

Personalised recommendations