Advertisement

Journal of Applied Electrochemistry

, Volume 17, Issue 4, pp 877–880 | Cite as

Simulation of a packed bipolar cell involving cathodic limiting current and anodic Tafel behaviour

  • Yoshinori Miyazaki
  • Akira Katagiri
  • Shiro Yoshizawa
Short Communication

Keywords

Physical Chemistry Bipolar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

length of unit cell (cm)

b

anodic Tafel b-factor (V)

E

average electric field in solution (V cm−1)

IF

faradaic current in unit cell (A)

IS

bypass current through solution in unit cell (A)

IT

total current in unit cell (A)

i

current density (A cm−1)

id

cathodic limiting current density (A cm−1)

R

apparent resistance of solution in unit cell (Ω)

r

radius of cylindrical electrode (cm)

V0

threshold voltage (V)

V0a

characteristic voltage for anodic reaction (V)

V0c

characteristic voltage for cathodic reaction (V)

Vcell

voltage applied to unit cell (V)

x, y

Cartesian coordinates defined in Fig. 1 (cm)

ηP

power efficiency (dimensionless)

κ

specific conductivity of solution or conducting paper (Ω-1)*

Φma

inner potential of electrode in anodic region (V)

Φmc

inner potential of electrode in cathodic region (V)

Φsa

inner potential of solution in anodic region (V)

Φsc

inner potential of solution in cathodic region (V)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Fleischmann, J. W. Oldfield and C. L. K. Tennakoon, ‘The Electrochemical Bipolar Particulate Cell’, Symposium on the Electrochemical Engineering, Newcastle upon Tyne (1971); Proceedings, Vol. 1, The Institution of Chemical Engineers, London (1973) p. 53;Chem. Abstr. 80 (1974) 55276b.Google Scholar
  2. [2]
    A. B. Smith and M. J. Hayes, Ger. Offen., 1949129, 9 April 1970; US Application, 1 October 1968;Chem. Abstr. 72 (1970) 124900z.Google Scholar
  3. [3]
    S. Yoshizawa, Y. Miyazaki and A. Katagiri,Nippon Kagaku Kaishi (1977) 19;Chem. Abstr. 86 (1977) 126710a.Google Scholar
  4. [4]
    S. Yoshimura, A. Katagiri and S. Yoshizawa,Nippon Kagaku Kaishi (1978) 1144;Chem. Abstr. 89 (1978) 203641v.Google Scholar
  5. [5]
    S. Motozawa, Japan. Patent 78 35867, 29 September 1978;Chem. Abstr. 86 (1977) 130035b.Google Scholar
  6. [6]
    T. Sawa, M. Kubota, S. Takahashi and Y. Masaki,Desalination 32 (1980) 373.Google Scholar
  7. [7]
    F. Goodridge, C. J. H. King and A. R. Wright,Electrochim. Acta 22 (1977) 347.Google Scholar
  8. [8]
    J. Newman, ‘Electrochemical Systems’, Prentice Hall, Englewood Cliffs, NJ (1973) pp. 340–52.Google Scholar
  9. [9]
    S. Yoshizawa (ed), ‘Denki Kagaku’, Vol. 3, Kyoritsu-Shuppan, Tokyo (1974), pp. 189–205.Google Scholar
  10. [10]
    M. Takahashi and N. Masuko, ‘Kogyodenkai no Kagaku’, Agune, Tokyo (1979) pp. 135–53; 269–74.Google Scholar
  11. [11]
    F. Hine, ‘Electrode Processes and Electrochemical Engineering’, Plenum Press, New York (1985) pp. 313–38.Google Scholar
  12. [12]
    Y. Miyazaki, A. Katagiri and S. Yoshizawa,J. Appl. Electrochem. 17 (1987) 113.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Yoshinori Miyazaki
    • 1
  • Akira Katagiri
    • 2
  • Shiro Yoshizawa
    • 1
  1. 1.Department of Industrial Chemistry, Faculty of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Chemistry, College of Liberal Arts and SciencesKyoto UniversityKyotoJapan

Personalised recommendations