Journal of Applied Electrochemistry

, Volume 17, Issue 4, pp 737–745 | Cite as

Oxygen evolution reaction on thermally treated iridium oxide films

  • Marijan Vuković
Papers

Abstract

The properties of electrochemically grown and thermally treated oxide films on iridium were examined by cyclic voltammetry and potentiostatic polarization at potentials of the oxygen evolution reaction in 0.5 mol dm−3 sulphuric acid. The oxide was grown by square wave pulses from −0.25 to +1.25 V vs SCE, a procedure much faster in comparison with potentiodynamic activation at the same frequency. The activated electrode, exhibiting low corrosion resistance during oxygen evolution, was subsequently stabilized by heat treatment. Optimal conditions between stability and electrocatalytic activity have been determined to be between 200 and 300°C.

Keywords

Oxide Oxygen Physical Chemistry Heat Treatment Optimal Condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Trasatti and G. Lodi, in ‘Electrodes of Conductive Metallic Oxides’, part B (edited by S. Trasatti), Elsevier, Amsterdam (1981) p. 521.Google Scholar
  2. [2]
    L. D. Burke, p. 141.Google Scholar
  3. [3]
    M. R. Tarasevich, A. Sadkowski and E. Yeager, in ‘Comprehensive Treatise of Electrochemistry, Vol. 7’ (edited by B. E. Conway, J. O'M. Bockris, E. Yeager, S. U. M. Khan and R. E. White), Plenum Press, New York (1983) p. 301.Google Scholar
  4. [4]
    S. Trasatti,Electrochim Acta 29 (1984) 1503.Google Scholar
  5. [5]
    J. O'M. Bockris and T. Otagawa,J. Phys. Chem. 87 (1983) 2960.Google Scholar
  6. [6]
    S. Gottesfeld, J. D. E. mcIntyre, G. Beni and J. L. Shay,Appl. Phys. Lett. 33 (1978) 208.Google Scholar
  7. [7]
    G. Beni and J. L. Shay,33 (1978) 567.Google Scholar
  8. [8]
    S. Gottesfeld and J. D. E. McIntyre,J. Electrochem. Soc. 126 (1979) 742.Google Scholar
  9. [9]
    P. Stonehart, H. Angerstein-Kozlowska and B. E. Conway,Proc. Roy. Soc., A 310 (1969) 541.Google Scholar
  10. [10]
    A. Capon and R. Parsons,J. Electroanal. Chem. 39 (1972) 275.Google Scholar
  11. [11]
    D. A. J. Rand and R. Woods,55 (1974) 375.Google Scholar
  12. [12]
    J. M. Otten and W. Visscher,55 (1974) 1.Google Scholar
  13. [13]
    55 (1974) 13.Google Scholar
  14. [14]
    A. T. Kuhn and C. J. Mortimer,J. Electrochem. Soc. 120 (1973) 231.Google Scholar
  15. [15]
    S. Ardizzone, A. Carugati and S. Trasatti,J. Electroanal. Chem. 126 (1981) 287.Google Scholar
  16. [16]
    D. N. Buckley and L. D. Burke,J. Chem. Soc. Faraday Trans 71 (1975) 1447.Google Scholar
  17. [17]
    D. N. Buckley, L. D. Burke and J. K. Mulcahy,72 (1976) 1896.Google Scholar
  18. [18]
    L. D. Burke and D. P. Whelan,J. Electroanal. Chem. 162 (1984) 121.Google Scholar
  19. [19]
    D. Michell, D. A. J. Rand and R. Woods,84 (1977) 117.Google Scholar
  20. [20]
    J. O. Zerbino, N. R. de Tacconi and A. J. Arvia,J. Electrochem. Soc. 125 (1978) 1266.Google Scholar
  21. [21]
    J. O. Zerbino and A. J. Arvia,126 (1979) 93.Google Scholar
  22. [22]
    L. D. Burke and D. P. Whelan,J. Electroanal. Chem. 124 (1981) 333.Google Scholar
  23. [23]
    S. H. Glarum and J. H. Marshall,J. Electrochem. Soc. 127 (1980) 1467.Google Scholar
  24. [24]
    J. Mozota and B. E. Conway,Electrochim. Acta 28 (1983) 1.Google Scholar
  25. [25]
    28 (1983) 9.Google Scholar
  26. [26]
    V. Birss, R. Myers, H. Angerstein-Kozlowska and B. E. Conway,J. Electrochem. Soc. 131 (1984) 1502.Google Scholar
  27. [27]
    H. Y. Hall and P. M. A. Sherwood,J. Chem. Soc. Faraday Trans. l 80 (1984) 135.Google Scholar
  28. [28]
    M. Peuckert,Surface Sci. 144 (1984) 451.Google Scholar
  29. [29]
    J. Augustynski, M. Koudelka, J. Sanchez and B. E. Conway,J. Electroanal. Chem. 160 (1984) 233.Google Scholar
  30. [30]
    M. Pueckert,185 (1985) 379.Google Scholar
  31. [31]
    S. Gottesfeld and S. Srinivasan,86 (1978) 89.Google Scholar
  32. [32]
    A. Damjanović and M. K. Y. Wang,J. Electrochem. Soc. 114 (1967) 592.Google Scholar
  33. [33]
    D. N. Buckley and L. D. Burke,J. Chem. Soc. Faraday Trans. I 72 (1976) 2431.Google Scholar
  34. [34]
    M. H. Miles, E. A. Klaus, B. P. Gunn, J. R. Locker, W. E. Serafin and S. Srinivasan,Electrochim. Acta 23 (1978) 521.Google Scholar
  35. [35]
    E. J. Frazer and R. Woods,J. Electroanal. Chem. 102 (1979) 127.Google Scholar
  36. [36]
    L. D. Burke and E. J. M. O'Sullivan,117 (1981) 155.Google Scholar
  37. [37]
    A. Damjanović, A. Dey and J. O'M. Bockris,J. Electrochem. Soc. 113 (1966) 739.Google Scholar
  38. [38]
    J. O'M. Bockris,J. Chem. Phys. 24 (1956) 817.Google Scholar
  39. [39]
    R. Kötz, H. Neff and S. Stucki,J. Electrochem Soc. 131 (1984) 72.Google Scholar
  40. [40]
    R. Kötz, H. J. Lewerenz, P. Brüesch and S. Stucki,J. Electroanal. Chem. 150 (1983) 209.Google Scholar
  41. [41]
    G. Beni, L. M. Schiavone, J. L. Shay, W. C. Dautremont-Smith and B. S. Schneider,Nature 282 (1979) 281.Google Scholar
  42. [42]
    S. Hackwood, L. M. Schiavone, W. C. Dautremont-Smith and G. Beni,J. Electrochem. Soc. 128 (1981) 2569.Google Scholar
  43. [43]
    L. D. Burke and E. J. M. O'Sullivan,J. Electroanal. Chem. 93 (1978) 11.Google Scholar
  44. [44]
    M. Vuković, H. Angerstein-Kozlowska and B. E. Conway,J. Appl. Electrochem. 12 (1982) 193.Google Scholar
  45. [45]
    C. Iwakura, K. Hirao and H. Tamura,Electrochim. Acta 22 (1977) 335.Google Scholar

Copyright information

© Chapman and Hall Ltd 1987

Authors and Affiliations

  • Marijan Vuković
    • 1
  1. 1.Laboratory of Electrochemistry and Surface Phenomena‘Rudjer Bošković’ InstituteZagrebCroatia, Yugoslavia

Personalised recommendations