Skip to main content
Log in

Pathogenetic mechanisms in combined cilioretinal artery and retinal vein occlusion: a reappraisal

  • Original Papers
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

We examined nine patients who presented cilioretinal artery occlusion (CLRAO) associated with retinal vein occlusion (RVO). CLRAO was probably secondary to the raised intraluminal resistance consequent to the RVO in patients showing initially a delayed filling of the cilioretinal artery in fluorescein angiography. Interestingly, these patients presented an ophthalmoscopically more severe form of RVO and had systemic predisposing factors for a RVO. In patients presenting a physiological perfusion of the cilioretinal artery in fluorescein angiography, RVO was a self limited disease and etiologic factors were not found. This may suggest that in these patients the CLRAO probably occurred simultaneously with the RVO after a decrease in perfusion pressure in both retinal and cilioretinal arterial systems. In this combined vaso-occlusive retinopathy the vulnerability of cilioretinal arteries can be explained either by the absence of autoregulation or by their lower perfusion pressure gradient in comparison with retinal arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson JF, Gregson RMC, Merry P, Schulenburg WE. Vasoocclusive retinopathy in the primary antiphospholipid syndrome. Eye 1991; 5: 48–55.

    Google Scholar 

  2. Alm A, Bill A. The effect of stimulation of the sympathetic chain on retinal oxygen tension and uveal, choroidal and cerebral blood flow in cats. Acta Physiol Scand 1973; 88: 84–94.

    Google Scholar 

  3. Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressure in monkeys (Macarairus): a study with radioactively labelled microspheres including flow determination in brain and some other tissues. Exp Eye Res 1973; 15: 15–29.

    Google Scholar 

  4. Alm A, Bill A. Ocular circulation. In: Moses RA, Hart WM (eds) Adler's physiology of the eye. Clinical application. 8th ed. C.V. Mosby, St. Louis, pp 183–203,1987

  5. Blumenthal M, Best M, Galin MA, Gitter K A. Ocular circulation: analysis of induced ocular hypertension on retinal and choroidal blood flow in man. Am J Ophthalmol 1971; 71: 819–25.

    Google Scholar 

  6. Brazitikos PD, Pournaras CJ, Baumgartner A. Occlusion d'une artère ciliorétinienne associée à une occlusion de la veine centrale de la rétine. Klin. Mbl. Augenheilk. (Vortäge des 83 Jahrekongresses der Schweizerischen Ophthalmologischen Gesellschaft) 1951; 198: 374–6.

    Google Scholar 

  7. Brown GC, Moffat K, Cruess A, Magargal LE, et al. Cilioretinal artery obstruction. Retina 1983; 3: 182–7.

    Google Scholar 

  8. Brown GC, Shields JA. Cilioretinal arteries and retinal arterial occlusion. Arch Ophthalmol 1979; 97: 84–92.

    Google Scholar 

  9. Duker JS, Cohen MS, Brown GC, Sergott RC, et al. Combined branch retinal artery and central retinal vein obstruction. Retina 1990; 10: 105–12.

    Google Scholar 

  10. Gasser P, Flammer J. Influence of vasospasms on visual function. Doc Ophthalmol 1987; 66: 3–18.

    Google Scholar 

  11. Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 1979; 18: 1030–42.

    Google Scholar 

  12. Glacet-Bernard A, Gaudric A, Touboul C, Coscas G. Occlusion de la veine centrale de la rétine avec occlusion d'une artère ciliorétinienne: A propos de 7 cas. J Fr Ophtalmol 1987; 10: 269–77.

    Google Scholar 

  13. Guthauser U, Flammer J, Mahler F. The relationship between digital and ocular vasospasm. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 224–226.

    Google Scholar 

  14. Hayreh SS. The cilioretinal arteries. Br J Ophthalmol 1963; 47: 71–89.

    Google Scholar 

  15. Hayreh SS. Pathogenesis of occlusion of the central retinal vessels. Am J Ophthalmol 1971; 72: 998–1011.

    Google Scholar 

  16. Hayreh SS. Classification of central retinal vein occlusion. Ophthalmology 1983; 90: 458–74.

    Google Scholar 

  17. Hughes GRV, Harris EN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol 1986; 13: 486–9.

    Google Scholar 

  18. Kleiner RC, Najarian LV, Schatten S, Jabs DA, Patz A, et al. Vaso-occlusive retinopathy associated with anti-phospholipid antibodies (lupus anticoagulant retinopathy). Ophthalmology 1989; 96: 896–904.

    Google Scholar 

  19. LeFrançois A, Sterkers-Renault C, D'Esperey-Fougeres R, Mondon H, et al. Occlusion de la veine centrale de la rétine avec infarctus d'une artère ciliorétinienne. Bull Soc Opht France 1980; 80: 67–72.

    Google Scholar 

  20. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma and oedema of the optic disc. Br J Ophthalmol 1969; 53: 721–48.

    Google Scholar 

  21. McLeod D. Cilioretinal arterial circulation in central retinal vein occlusion. Br J Ophthalmol 1975; 59: 486–92.

    Google Scholar 

  22. McLeod D, Ring CP. Cilioretinal infraction after retinal vein occlusion. Br J Ophthalmol 1976; 60: 419–27.

    Google Scholar 

  23. Oosterhuis JA. Fluorescein fundus photography in retinal venous occlusion. In: Henkes HE (ed) Perspectives in ophthalmology. Excerpta Medica Foundation, Amsterdam, pp 29–47, 1968

    Google Scholar 

  24. Riva CE, Grunwald JE, Petrig BL. Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 1986; 27: 1706–12.

    Google Scholar 

  25. Riva CE, Pournaras CJ, Tsacopoulos M. Regulation of local oxygen tension and blood flow in the inner retina during hyperoxia. J Appl Physiol 1986; 61: 592–8.

    Google Scholar 

  26. Rootman J. Vascular system of the optic nerve head and retina in the pig. Br J Ophthalmol 1971; 55: 808–19.

    Google Scholar 

  27. Schatz H, Fong ACO,. McDonald HR, Johnson RN, et al. Cilioretinal artery occlusion in young adults with central retinal vein occlusion. Ophthalmology 1991; 98: 594–601.

    Google Scholar 

  28. Turut P, Castier Ph, Beve C. Infarctus cilio-rétinien et occlusion veineuse rétinienne. J Fr Ophtalmol 1987; 10: 355–63.

    Google Scholar 

  29. Weinstein JM, Duckrow RB, Beard D, Brennan RW. Régional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 1983; 24: 1559–65.

    Google Scholar 

  30. Zylbermann R, Rozenman Y, Rourn S. Functional occlusion of a cilioretinal artery. Ann Ophthalmol 1981; 13: 1269–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazitikos, P.D., Pournaras, C.J., Othenin-Girard, P. et al. Pathogenetic mechanisms in combined cilioretinal artery and retinal vein occlusion: a reappraisal. Int Ophthalmol 17, 235–242 (1993). https://doi.org/10.1007/BF01007789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007789

Key words

Navigation