Itô versus Stratonovich


A survey is given of the facts and fancies concerning the nonlinear Langevin or Itô equation. Actually, it is merely a pre-equation, which becomes an equation when an interpretation rule is added. The rules of Itô and Stratonovich differ, but both are mathematically consistent and therefore equally admissible conventions. The reason why they seem to lead to physical differences is that the Langevin approach used to arrive at the equation involves a tacit assumption. For systems with external noise this assumption can be justified, and it is then clear that the Stratonovich rule applies. Systems with internal noise, however, can only be properly described by a master equation and the Itô-Stratonovich controversy never enters. Afterward one is free to model the resulting fluctuations either with an Itô or a Stratonovich scheme, but that does not lead to any new information.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. H. Gray and T. K. Caughey,J. Math. Phys. 44:288 (1965).

    MATH  Google Scholar 

  2. 2.

    R. E. Mortensen,J. Stat. Phys. 1:271 (1969).

    Article  ADS  Google Scholar 

  3. 3.

    N. S. Goel and N. Richter-Dyn,Stochastic Models in Biology (Academic Press, New York, 1974).

    Google Scholar 

  4. 4.

    K. Itô,Proc. Imp. Acad. Tokyo 20, no. 8 (1944);22, no. 2 (1946);Mem. Am. Math. Soc. 4:1 (1951).

  5. 5.

    J. L. Doob,Stochastic Processes (Wiley, New York, 1953), pp. 273ff.

    Google Scholar 

  6. 6.

    R. L. Stratonovich,SIAM J. Control 4:362 (1966);Topics in the Theory of Random Noise. I (Gordon and Breach, New York 1963), pp. 89ff.

    Article  MathSciNet  Google Scholar 

  7. 7.

    K. Itô,Nagoya Math. J. 1:35 (1950);3:55 (1951); L. Arnold,Stochastische Differentialgleichungen (Oldenbourg, Vienna, 1973), p. 103.

    MATH  MathSciNet  Google Scholar 

  8. 8.

    P. Langevin,C. R. Acad. Sci. Paris 146:530 (1908); G. E. Uhlenbeck and L. Ornstein,Phys. Rev. 36:823 (1930).

    MATH  Google Scholar 

  9. 9.

    B. J. West, A. R. Bulsara, K. Lindenberg, V. Seshadri, and K. E. Shuler,Physica 97A:211 (1979).

    MathSciNet  ADS  Google Scholar 

  10. 10.

    E. Wong and M. Zakai,Ann. Math. Stat. 36:1560 (1965).

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    D. K. C. MacDonald,Phil. Mag. 45:63 (1954);Phys. Rev. 108:541 (1957).

    MATH  Google Scholar 

  12. 12.

    N. G. van Kampen, inFluctuation Phenomena in Solids, Burgess, ed. (Academic Press, New York, 1965).

    Google Scholar 

  13. 13.

    T. Kawakubo, S. Kabashima, and Y. Tsuchiya,Prog. Theor. Phys. Suppl. 64:150 (1978).

    Article  ADS  Google Scholar 

  14. 14.

    N. G. van Kampen,Phys. Reports 24:171 (1976).

    Article  ADS  Google Scholar 

  15. 15.

    H. Mori,Prog. Theor. Phys. 53:1617 (1975).

    Article  ADS  Google Scholar 

  16. 16.

    M. S. Green,J. Chem. Phys. 20:1281 (1952).

    Article  MathSciNet  ADS  Google Scholar 

  17. 17.

    N. G. van Kampen, inThermodynamics and Kinetics of Biological Processes, A. I. Zotin, ed. (Moscow, 1980).

  18. 18.

    N. G. van Kampen,Can. J. Phys. 39:551 (1961); inAdvances in Chemical Physics, Vol. 34, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1976), p. 245; R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973).

    MATH  ADS  Google Scholar 

  19. 19.

    Z. A. Akcasu,J. Stat. Phys. 16:33 (1977); D. Bedeaux,Phys. Lett. 62A:10 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  20. 20.

    A. Onuki,J. Stat. Phys. 19:325 (1978); P. Hanggi,Z. Phys. B36:271 (1980); see also D. L. Snyder,Random Point Processes (Wiley, New York, 1975), pp. 185ff.

    Article  MathSciNet  ADS  Google Scholar 

  21. 21.

    E. J. McShane,Proc. Nat. Acad. Sci. US 63:275, 1084 (1969); S. K. Srinivasan,SM Archives 3:325 (1978).

    MATH  Article  MathSciNet  ADS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Kampen, N.G. Itô versus Stratonovich. J Stat Phys 24, 175–187 (1981).

Download citation

Key words

  • Fluctuations
  • stochastic differential equations
  • Langevin approach