Skip to main content
Log in

Comparative studies on the dynamics of crosslinked insulin

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were carried out on an insulin crosslinked between the N-terminal A chain and the C-terminal B chain to form a so-called mini-proinsulin: Nα-A1-Nε-B29-diaminosuberoyl insulin (DASI). To investigate the influence of crosslinking on the dynamics of the insulin moiety, the bridge was removed from a transient DASI structure and simulation was carried on independently with the then unlinked (ULKI) as well as with the crosslinked species. The effects of crystal packing and quaternary interactions were checked by simulating both types of monomers and dimers known from the hexamer structure. All simulations were compared to previous ones of native insulin. DASI shows general similarity to the native simulations in most parts of the structure. Deviations are visible in the segments to which the bridge is directly connected, i.e. their flexibility is reduced. Upon removal of the bridge the ULKI simulations reapproach those of native insulin. The influence of the bridge spreads over the whole molecule, but all of its main structural features remain intact. The simulations suggest that the displacement of the C-terminal B chain of native insulin, considered important for receptor interaction, is prevented by the bridge, which also partially shields some binding residues. This is in accordance with the poor biological potency of A1-B29-crosslinked insulins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DASI-insulin(DASI):

bovineNα-A1-Nε-B29-di-aminosuberoyl insulin

ULK-insulin (ULKI):

Native beef insulin with the bridge of DASI removed

References

  • Adams MJ, Baker EN, Blundell TL, Harding MM, Dodson EJ, Hodgkin DC, Dodson GG, Rimmer B, Vijayan M, Sheat S (1969) Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature 224:491–495

    Google Scholar 

  • Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Crowfoot Hodgkin DM, Hubbard RE, Isaacs NW, Reynolds CD, Sakabe K, Sakabe N, Vijayan NM (1988) The structure of 2 Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc Lon B 319:369–456

    Google Scholar 

  • Brandenburg D (1972) Preparation of Nα-A1, N-B29-adipoylinsulin, an intramolecularly crosslinked derivative of beef insulin. Hoppe-Seyler's Z Physiol Chem 353:869–873

    Google Scholar 

  • Brandenburg D, Wollmer A (1973) The effect of a non-peptide interchain crosslink on the reoxidation of reduced insulin. Hoppe-Seyler's Z Physiol Chem 354:613–627

    Google Scholar 

  • Brandenburg D, Gattner HG, Weinert M, Herbertz L, Zahn H, Wollmer A (1971) Structure-function studies with derivatives and analogs of insulin and its chains. Proceedings of the VIth Congress of the International Diabetes Federation. Excerpta Med Int Congr Ser 231:363–376

    Google Scholar 

  • Brandenburg D, Gattner HG, Wollmer A (1972) Darstellung und Eigenschaften von Acetylderivaten des Rinderinsulins, I. Hoppe-Seyler's Z Physiol Chem 353:599–617

    Google Scholar 

  • Brandenburg D, Busse WD, Gattner HG, Zahn H, Wollmer A, Glieman J, Puls W (1973a) Structure-function studies with chemically modified insulins. In: Hanson H, Jakubke H-D (eds) Peptides. Elsevier, Amsterdam, pp 270–283

    Google Scholar 

  • Brandenburg D, Schmermutzki W, Zahn H (1973 b) Nα-A1-Nε-B29- crosslinked diaminosuberoyl-insulin, a potential intermediate for the chemical synthesis of insulin. Hoppe-Seyler's Z Physiol Chem 354:1521–1524

    Google Scholar 

  • Brems DN, Brown PL, Nakagawa SH, Tager HS (1991) The conformational stability and flexibility of insulin with an additional intramolecular cross-link. J Biol Chem 266:1611–1615

    Google Scholar 

  • Caves LSD, Nguyen DT, Hubbard RE (1991) Conformation variability of insulin. A molecular dynamics analysis. In: Goodfellow JM (ed) Molecular dynamics: an overview of applications in molecular biology. MacMillan Press, New York, pp 27–68

    Google Scholar 

  • Cutfield J, Cutfield S, Dodson E, Dodson G, Hodgkin D, Reynolds C (1981) Evidence concerning insulin acticity from the structure of a cross-linked derivative. Hoppe-Seyler's Z Physiol Chem 362:755–761

    Google Scholar 

  • Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, Bing X, Markussen J (1991) X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. J Mol Biol 220:425–433

    Google Scholar 

  • Dodson EJ, Dodson GG, Hodgkin DC, Reynolds CD (1979) Structural relationships in the two-zinc insulin hexamer. Canad J Biochem 57:469–479

    Google Scholar 

  • Dodson G, Cutfield S, Hoenjet E, Wollmer A, Brandenburg D (1980) Crystal structure, aggregation and biological potency of beef insulin cross-linked at A1 and B29 by diaminosuberic acid. In: Brandenburg D, Wollmer A (eds) Insulin, chemistry, structure and function of insulin and related hormones. Walter de Gruyter, Berlin, New York, pp 17–26

    Google Scholar 

  • Dodson EJ, Dodson GG, Hubbard RE, Reynolds CD (1983) Insulin's structural behaviour and its relation to activity. Biopolymers 22:281–291

    Google Scholar 

  • Freychet P, Brandenburg D, Wollmer A (1974) Receptor-binding assay of chemically modified insulins. Diabetologia 10:1–5

    Google Scholar 

  • Gliemann J, Gammeltoft S (1974) The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia 10:1–5

    Google Scholar 

  • Hua QX, Weiss MA (1991) Comparative 2D NMR studies of human insulin and despenta-peptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry 30:5505–5515

    Google Scholar 

  • Hua QX, Shoelson SE, Kochoyan M, Weiss MA (1991) Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354:238–241

    Google Scholar 

  • Hua QX, Kochoyan M, Weiss MA (1992a) Structure and dynamics of des-pentapeptide-insulin in solution: The molten-globule hypothesis. Proc Natl Acad Sci, USA 89: 2379–2383

    Google Scholar 

  • Hua QX, Shoelson SE, Weiss MA (1992b) Nonlocal Structural Perturbation in A Mutant Human Insulin: Sequential Resonance Assignment and13C-Isotype-Aided 2D-NMR Studies of [Phe B24 → Gly] Insulin with Implications for Receptor Recognition. Biochemistry 31:11940–11951

    Google Scholar 

  • Hua QX, Ladbury JE, Weiss MA (1993a) Dynamics of A Monomeric Insulin Analogue: Testing the Molten-Globule Hypothesis. Biochemistry 32:1433–1442

    Google Scholar 

  • Hua QX, Jia W, Frank BH, Weiss MA (1993b) Comparison of the Dynamics of An Engineered Insulin Monomer and Dimer by Acid-Quenched Amide Proton Exchange. J Mol Biol 230:387–394

    Google Scholar 

  • Hua QX, Shoelson SE, Inouye K, Weiss MA (1993c) Paradoxical structure and function in a mutant human insulin associated with diabetes mellitus.Proc Natl Acad Sci, USA 90:582–586

    Google Scholar 

  • Jones RH, Dron DI, Ellis MJ, Sönksen PH, Brandenburg D (1976) Biological properties of chemically modified insulins. I. Biological activity of proinsulin and insulin modified at A1-glycine and B29-lysine. Diabetologia 12:601–608

    Google Scholar 

  • Jorgensen AMM, Kristensen SM, Led JJ, Balschmidt P (1992) Three-dimensional Solution Structure of an Insulin Dimer. J Mol Biol 227:1146–1163

    Google Scholar 

  • Kline AD, Justice RM (1990) Complete Sequence-Specific 1H NMR Assignment for Human Insulin. Biochemistry 29:2906–2913

    Google Scholar 

  • Knetgel TMA, Boelens R, Gandu ML, Kaptein R (1991) The solution structure of a monomeric insulin. Eur J Biochem 202:447–458

    Google Scholar 

  • Kobayashi M, Sasaoka T, Sugibayashi M, Iwanishi M, Shigeta Y (1989) Receptor binding and biologic activity of biosynthetic human insulin and mini-proinsulin produced by recombinant gene technology. Diabetes Res Clinic Practice 7:25–28

    Google Scholar 

  • Krüger P, Szameit A (1992) SIMLYS version 2.0. Comput Phys Comun 72:265–268

    Google Scholar 

  • Krüger P, Straßburger W, Wollmer A, van Gunsteren WF, Dodson G (1987) The simulated dynamics of the insulin monomer and their relationship to the molecule's structure. Eur Biophys J 14:449–459

    Google Scholar 

  • Krüger P, Straßburger W, Szameit A, Grötzinger J, Hahnen J, Wollmer A (1988) Entwicklung eines Auswertesystems für die Moleküldynamik-Simulationen. In: Bussion BM, Weber E (eds) Molecular Modelling. Bundesministerium für Forschung und Technologie, Bonn, pp 65–75

    Google Scholar 

  • Krüger P, Lüke M, Szameit A (1991) SIMLYS — A software package for trajectory analysis of molecular dynamics simulations. Comput Phys Commun 62:371–380

    Google Scholar 

  • Lindsay DG (1971) Intramolecular cross-linked insulin. FEBS Lett 21:105–108

    Google Scholar 

  • Mark AE, Berendsen HJC, van Gunsteren WF (1991) Conformational flexibility of aqueous monomeric and dimeric insulin: a molecular dynamics study. Biochemistry 30:10866–10872

    Google Scholar 

  • Markussen J, Jorgensen KH, Sorensen AR, Thim L (1985) Single chain des-(B30)insulin. Int J Peptide Protein Res 26:70–77

    Google Scholar 

  • Mirmira RG, Nakagawa SH, Tager HS (1991) Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. J Biol Chem 266:1428–1436

    Google Scholar 

  • Nakagawa SH, Tager HS (1986) Role of the Phenylalanine B25 Side Chain in Directing Insulin Interaction with Its Receptor. J Biol Chem 261:7332–7341

    Google Scholar 

  • Nakagawa SH, Tager HS (1989) Perturbation of insulin-receptor interactions by intramolecular hormone cross-linking. J Biol Chem 264:272–297

    Google Scholar 

  • Nakagawa SH, Tager HS (1992) Importance of Aliphatic SideChain Structure at Positions 2 and 3 of the Insulin A chain in Insulin-Receptor Interactions. Biochemistry 31:3204–3214

    Google Scholar 

  • Nakagawa SH, Tager HS (1993) Importance of Main-Chain Flexibility and the Insulin Fold in Insulin-Receptor Interaction. Biochemistry 32:7237–7243

    Google Scholar 

  • Pullen RA, Lindsay DG, Wood SP, Tickle IJ, Blundell TL, Wollmer A, Krail G, Brandenburg D, Zahn H, Gliemann J, Gammeltoft S (1976) Receptor-binding region of insulin. Nature 259:369–373

    Google Scholar 

  • Van Gunsteren WF, Berendsen HJC (1987) Program System GROMOS 87. Distributed by: BIOMOS biomolecular software b. v., Laboratory of Physical Chemistry, University of Groningen, NL

    Google Scholar 

  • Van Gunsteren WF, Mark AE (1992) On the interpretation of biochemical data by molecular dynamics computer simulation. Eur J Biochem 201:947–961

    Google Scholar 

  • Weiss MA, Frank BH, Khait I, Pekar A, Heiney R, Shoelson SE, Neuringer LJ (1990) NMR and Photo-CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29:8389–8401

    Google Scholar 

  • Wlodawer A, Savage H, Dodson G (1989) Structure of insulin: results of joint neutron and X-ray refinement. Acta Crystallogr B45:99–107

    Google Scholar 

  • Wodak SJ, Alard P, Delhaise P, Renneborg-Squilbin C (1984) Simulation of Conformational Changes in 2 Zn Insulin. J Mol Biol 181:317–322

    Google Scholar 

  • Wood SP, Blundell TL, Wollmer A, Lazarus NR, Neville RWJ (1975) The Relation of Conformation and Association of Insulin to Receptor Binding; X-Ray and Circular-Dichroism Studies on Bovine and Hystricomorph Insulins. Eur J Biochem 55:531–542

    Google Scholar 

  • Wroblowski B (1993) Moleküldynamik-Simulationen von monomeren und dimeren Insulinen in wässriger Lösung: Vergleich mit experimentellen Daten. Thesis, Aachen

  • Zahn H (1950) Versuche zur Stabilisierung von Wolle und Seide mit 1,3-Difluor-4,6-dinitrobenzol. Melliand Textilberichte 31:762–763

    Google Scholar 

  • Zahn H, Meienhofer J (1957) Reaktionen von 1,5-Difluor-2,4-dinitrobenzol mit Insulin. Makromol Chem 26:153–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, P., Hahnen, J. & Wollmer, A. Comparative studies on the dynamics of crosslinked insulin. Eur Biophys J 23, 177–187 (1994). https://doi.org/10.1007/BF01007609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007609

Key words

Navigation