Advertisement

Theoretica chimica acta

, Volume 24, Issue 4, pp 300–306 | Cite as

Mass-variation and Darwin relativistic corrections in many-electron atoms

  • B. W. N. Lo
  • K. M. S. Saxena
  • S. Fraga
Commentationes

Abstract

The formulation for the evaluation of the matrix elements over the relativisitic mass-variation and Darwin operators is presented. Calculations of these corrections have been carried out, using available analytical Hartree-Fock functions, for the positive ions, neutral systems, and negative ions for all the atoms from He to Kr.

Keywords

Physical Chemistry Inorganic Chemistry Organic Chemistry Matrix Element Relativistic Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die Formulierung der Matrix-Elemente des Operators der relativistischen Massen-Variation und des Darwin-Operators wird angegeben. Die Größe dieser Korrekturen wird unter Benutzung bekannter analytischer Hartree-Fock-Funktionen für die positiven Ionen, neutralen Systeme und negativen Ionen aller Atome von He bis Kr berechnet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong,L.,Jr.: Physic. Rev.170, 122(1968).Google Scholar
  2. 2.
    Bethe,H.A., Salpeter,E.E.: Quantum mechanics of one- and two-electron atoms. New York: Academic Press 1957.Google Scholar
  3. 3.
    Clementi,E.: Tables of atomic functions. San Jose: IBM 1965.Google Scholar
  4. 4.
    De-Shalit,A., Talmi,I.: Nuclear shell theory. New York: Academic Press 1963.Google Scholar
  5. 5.
    Fontana,P.R., Meath,W.J.: J. math. Physics9, 1357 (1968).Google Scholar
  6. 6.
    Fraga,S., Thorhallsson,J.: Physic. Rev.178, 70 (1969).Google Scholar
  7. 7.
    Jones,M.: J. Physics B3, 1571 (1970).Google Scholar
  8. 8.
    Lo,B.W.N., Saxena,K.M.S., Fraga,S.: Theoret. chim. Acta (Berl.) (in press).Google Scholar
  9. 9.
    Malli,G.: Canad. J. Physics44, 3121 (1966).Google Scholar
  10. 10.
    —, Fraga,S.: Canad. J. Physics44, 3131 (1966).Google Scholar
  11. 11.
    Nielson,C.W., Koster,G.F.: Spectroscopic coefficients for thep n,d n andf n configurations. Cambridge: MIT Press 1963.Google Scholar
  12. 12.
    Pekeris,C.L.: Physic. Rev.112, 1649 (1958).Google Scholar
  13. 13.
    Racah,G.: Physic. Rev.76, 1352 (1949).Google Scholar
  14. 14.
    Rudzikas,Z.: Liet. Fiz. Rinkinys9, 707 (1969).Google Scholar
  15. 15.
    —, Karaziya,R.: Liet. Fiz. Rinkinys10, 13 (1970).Google Scholar
  16. 16.
    Schiff,B., Lifson,H., Pekeris,C.L., Rabinowitz,P.: Physic. Rev.140, A 1104 (1965).Google Scholar
  17. 17.
    Sessler,A.M., Foley,H.M.: Physic. Rev.92, 1321 (1953).Google Scholar
  18. 18.
    Stewart,A.L.: Advan. Physics12, 299 (1963).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • B. W. N. Lo
    • 1
  • K. M. S. Saxena
    • 1
  • S. Fraga
    • 1
  1. 1.Division of Theoretical Chemistry, Department of ChemistryUniversity of AlbertaAlbertaCanada

Personalised recommendations