Journal of Statistical Physics

, Volume 47, Issue 3–4, pp 477–487 | Cite as

Tests of numerical simulation algorithms for the Kubo oscillator

  • Ronald F. Fox
  • Rajarshi Roy
  • A. W. Yu
Articles

Abstract

Numerical simulation algorithms for multiplicative noise (white or colored) are tested for accuracy against closed-form expressions for the Kubo oscillator. Direct white noise simulations lead to spurious decay of the modulus of the oscillator amplitude. A straightforward colored noise algorithm greatly reduces this decay and also provides highly accurate results in the white noise limit.

Key words

Numerical simulation multiplicative noise Kubo oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Helfand,Bell Systems Tech. J. 58:2289 (1979).Google Scholar
  2. 2.
    D. L. Ermak and H. Buckholz,J. Comput. Phys. 35:169 (1980).Google Scholar
  3. 3.
    S. Zhu, A. W. Yu, and R. Roy,Phys. Rev. A 34:4333 (1986).Google Scholar
  4. 4.
    R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II (Springer-Verlag, Berlin, 1985), Chapter 2.Google Scholar
  5. 5.
    L. Arnold,Stochastic Differential Equations (Wiley-Interscience, New York, 1974).Google Scholar
  6. 6.
    D. E. Knuth,The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, Massachusetts, 1969).Google Scholar
  7. 7.
    J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton,Phys. Rev. A 26:1589 (1982).Google Scholar
  8. 8.
    H. Risken,The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984).Google Scholar
  9. 9.
    J. R. Klauder and W. P. Peterson,SIAM J. Numer. Anal. 22:1153 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Ronald F. Fox
    • 1
  • Rajarshi Roy
    • 1
  • A. W. Yu
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlanta

Personalised recommendations