Skip to main content

The effect of lattice vibrations on trap-limited exciton lifetimes

Abstract

The problem of exciton migration and trapping on a linear polymer is treated as a random walk on a one-dimensional lattice. The average number of steps required for a walker to be trapped is calculated when the probability of stepping to adjacent lattice sites is not symmetrical, and is found to be less than that calculated for a symmetrical walk. An asymmetrical stepping probability is shown to result from the thermal vibrations of the lattice. The magnitude of this effect on the exciton lifetime is estimated and found to be significant.

This is a preview of subscription content, access via your institution.

References

  1. T. Förster,Ann. Physik 2:55 (1948).

    Google Scholar 

  2. T. Förster,Fluoreszenz Organische Verbindungen (Vandenhoek and Rupprecht, Göttingen, 1951).

    Google Scholar 

  3. T. Förster, in:Modern Quantum Chemistry, O. Sinanoglu, ed. (Academic Press, New York, 1965), Part III, p. 93.

    Google Scholar 

  4. R. S. Knox,Theory of Excitons, suppl.5 of Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1963).

    Google Scholar 

  5. L. N. M. Duysens,Progr. Biophys. 14:1 (1964).

    Google Scholar 

  6. R. M. Pearlstein, Preprint (1968).

  7. R. S. Knox,J. Theoret. Biol. 21:244 (1968).

    Google Scholar 

  8. E. W. Montroll,J. Math. Phys. 10:753 (1969).

    Google Scholar 

  9. R. M. Pearlstein, PhD dissertation, University of Maryland (1966).

  10. R. M. Pearlstein,Brookhaven Natl. Lab. Symp. 19:8 (1967).

    Google Scholar 

  11. G. W. Robinson,Brookhaven Natl. Lab. Symp. 19:16 (1967).

    Google Scholar 

  12. J. J. ten Bosch and Th. W. Ruijgrok,J. Theoret. Biol. 4:225 (1963).

    Google Scholar 

  13. E. W. Montroll,J. Phys. Soc. Japan 26, suppl.:6 (1969).

    Google Scholar 

  14. G. Hoch and R. S. Knox, in:Photophysiology, A. C. Giese, ed. (Academic Press, New York, 1968), Vol. 3, Chap. 7.

    Google Scholar 

  15. E. W. Montroll,Proc. Symp. Appl. Math. 16:193 (1964).

    Google Scholar 

  16. A. R. Von Hippel,Dielectrics and Waves (John Wiley and Sons, New York, 1954), p. 149.

    Google Scholar 

  17. A. A. Maradudin, E. W. Montroll, and G. H. Weiss,Theory of Lattice Dynamics in the Harmonic Approximation, suppl. 3 ofSolid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1963).

    Google Scholar 

  18. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York, 1965), p. xxxiv.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the US Office of Naval Research, and by the US Air Force Office of Scientific Research (Grant #611-67).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elliott, R.A., Lakatos, K. & Knox, R.S. The effect of lattice vibrations on trap-limited exciton lifetimes. J Stat Phys 1, 253–269 (1969). https://doi.org/10.1007/BF01007480

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007480

Key words

  • trap-limited exciton lifetimes
  • asymmetrical random walks
  • lattice vibrations
  • displacement correlation functions
  • phonon-assisted exciton lifetime reduction