Skip to main content

Limiting polytope geometry for rigid rods, disks, and spheres

Abstract

The available configuration space for finite systems of rigid particles separates into equivalent disconnected regions if those systems are highly compressed. This paper presents a study of the geometric properties of the limiting high-compression regions (polytopes) for rods, disks, and spheres. The molecular distribution functions represent cross sections through the convex polytopes, and for that reason they are obliged to exhibit single-peak behavior by the Brünn-Minkowski inequality. We demonstrate that increasing system dimensionality implies tendency toward nearest-neighbor particle-pair localization away from contact. The relation between the generalized Euler theorem for the limiting polytopes and cooperative “jamming” of groups of particles is explored. A connection is obtained between the moments of inertia of the polytopes (regarded as solid homogeneous bodies) and crystal elastic properties. Finally, we provide a list of unsolved problems in this geometrical many-body theory.

This is a preview of subscription content, access via your institution.

References

  1. H. L. Frisch, in:Advances in Chemical Physics, I. Prigogine, ed., Interscience Publishers, New York (1964), Vol. VI, p. 229.

    Google Scholar 

  2. J. D. Eshelby, in:Solid State Physics, F. Seitz and D. Turnbull, eds., Academic Press, Inc., New York (1965), Vol. 3, p. 79.

    Google Scholar 

  3. B. J. Alder, W. G. Hoover, and D. A. Young,J. Chem. Phys. 49:3688 (1968).

    Google Scholar 

  4. W. W. Wood, Los Alamos Scientific Laboratory (Los Alamos, N. M.) Report LA-2827, “Monte Carlo Calculations of the Equation of State of Systems of 12 and 48 Hard Circles,” 1963. (Available from Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.)

  5. Z. W. Salsburg and W. W. Wood,J. Chem. Phys. 37:798 (1962).

    Google Scholar 

  6. B. Grünbaum,Convex Polytopes, Interscience Publishers, New York (1967).

    Google Scholar 

  7. M. G. Kendall,A Course in the Geometry of n Dimensions, Hafner Publishing Co., New York (1961), p. 9.

    Google Scholar 

  8. F. H. Stillinger, Jr., and Z. W. Salsburg,J. Chem. Phys. 46:3962 (1967).

    Google Scholar 

  9. A. D. Wyner,Bell System Tech. J. 44:1061 (1965).

    Google Scholar 

  10. F. H. Stillinger, Jr., Z. W. Salsburg, and R. L. Kornegay,J. Chem. Phys. 43:932 (1965).

    Google Scholar 

  11. Z. W. Salsburg, W. G. Rudd, and F. H. Stillinger, Jr.,J. Chem. Phys. 47:4534 (1967).

    Google Scholar 

  12. W. G. Rudd, Z. W. Salsburg, A. P. Yu, and F. H. Stillinger, Jr.,J. Chem. Phys. 49:4857 (1968).

    Google Scholar 

  13. L. Tonks,Phys. Rev. 50:955 (1936).

    Google Scholar 

  14. E. Helfand, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 34:1037 (1960).

    Google Scholar 

  15. W, G. Hoover and F. H. Ree,J. Chem. Phys. 49:3609 (1968).

    Google Scholar 

  16. M. G. Kendall,op. cit., p. 35.

    Google Scholar 

  17. Z. W. Salsburg,J. Chem. Phys. 44:3752 (1966).

    Google Scholar 

  18. J. A. Barker,Australian J. Phys. 17:259 (1964).

    Google Scholar 

  19. W. G. Rudd,J. Chem. Phys. 48:619 (1968).

    Google Scholar 

  20. Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood,J. Chem. Phys. 21:1098 (1953).

    Google Scholar 

  21. T. L. Hill,Statistical Mechanics, McGraw-Hill Book Company, Inc., New York (1956), p. 204.

    Google Scholar 

  22. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  23. A. Rotenberg, “Monte Carlo Studies of Systems of Hard Spheres,” Courant Institute of Mathematical Sciences, New York University, New York, N. Y., Rept. NYO-1480–3.

  24. R. D. Larsen and Z. W. Salsburg,J. Chem. Phys. 45:4190 (1966).

    Google Scholar 

  25. R. D. Larsen and Z. W. Salsburg,J. Chem. Phys. 47:3334 (1967).

    Google Scholar 

  26. C. A. Rogers,Packing and Covering, Cambridge University Press, Cambridge (1964), pp. 14–15.

    Google Scholar 

  27. Ibid., p. 3.

    Google Scholar 

  28. Convexity, V. L. Klee, ed., Proceedings of Symposia in Pure Mathematics, Vol. VII, American Mathematical Society, Providence, R. I. (1963).

    Google Scholar 

  29. H. G. Eggleston,Convexity, No. 47 of Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, Cambridge (1958), p. 97.

    Google Scholar 

  30. L. Brillouin,Wave Propagation in Periodic Structures, Dover Publications, Inc., New York (1953), Chapters VI and VII.

    Google Scholar 

  31. W. Feller,An Introduction to Probability Theory and Its Applications, John Wiley and Sons, Inc., New York (1966), Vol. II, p. 252.

    Google Scholar 

  32. L. D. Landau and E. M. Lifshitz,Theory of Elasticity (translated by J. B. Sykes and W. H. Reid), Addison-Wesley Publ. Co., Reading, Mass. (1959), p. 2.

    Google Scholar 

  33. C. Kittel,Quantum Theory of Solids, John Wiley and Sons, Inc., New York (1963), p. 379.

    Google Scholar 

  34. F. H. Stillinger, Jr., E. A. DiMarzio, and R. L. Komegay,J. Chem. Phys. 40:1564 (1964).

    Google Scholar 

  35. C. N. Yang and T. D. Lee,Phys. Rev. 87:404, 410 (1952).

    Google Scholar 

  36. A. A. Maradudin, E. W. Montroll, and G. H. Weiss,Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York (1963), pp. 76–84.

    Google Scholar 

  37. Ibid., pp. 159–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stillinger, F.H., Salsburg, Z.W. Limiting polytope geometry for rigid rods, disks, and spheres. J Stat Phys 1, 179–225 (1969). https://doi.org/10.1007/BF01007250

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007250

Key words

  • Rigid spheres
  • Rigid disks
  • Rigid rods
  • Elasticity
  • High pressure
  • Polytopes
  • Convexity
  • Crystal anharmonicity
  • Pair correlation functions
  • Multidimensional geometry
  • Crystalline order
  • Crystal defects