Skip to main content

Pattern recognition and statistical mechanics


A mathematical connection is established between classes of problems in pattern recognition and in statistical mechanics. More explicitly, the former class embraces problems arising from the decision-theoretic approach to the automatic recognition of certain properties of patterns containing many targets. The latter class contains almost all problems involving the statistical mechanics of classical systems of interacting particles. The usefulness of the mathematical connection lies in the fact that it provides a bridge for the transfer of approximation methodologies from one area to the other. As examples of such a transfer this paper presents applications of a least mean square approximation method, which is well known in pattern recognition, to two problems in classical statistical mechanics, namely, the one-dimensional Ising problem and the one-component plasma problem. These problems were chosen because their solutions are well understood (the exact solution of the one-dimensional Ising model and the solution of the one-component plasma that is exact in the low concentration limit are both very well known) and consequently they are appropriate as “test beds” for the new approximation method. The simplest nontrivial approximate trial functions were used for the calculation of the average values of certain observables and the results were in agreement with the corresponding exact results for the Ising model in the limit of high temperature and for the one-component plasma in the limit of low concentration.

This is a preview of subscription content, access via your institution.

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richardson, J.M. Pattern recognition and statistical mechanics. J Stat Phys 1, 71–88 (1969).

Download citation

  • Received:

  • Issue Date:

  • DOI:

Key words

  • Decision theory
  • Ising model
  • Least square estimation
  • Pattern recognition
  • Plasmas
  • Statistical mechanics