Silicon Fabry-Perot interferometer as an optical FIR component: Application to variable couplers with uniform transmission of FIR optically-pumped lasers

  • F. Julien
  • J-M. Lourtioz
Article

Abstract

The far-infrared characteristics of the double silicon etalon Fabry-Perot (FP) reflector are investigated. Measurements are reported at short FIR wavelengths. The low IR and FIR absorption and the high optimum reflectivity of this device allow convenient optimization of the coupling conditions of CW optically-pumped FIR lasers. Three sets of Si F. P. reflectors when chosen to cover complementary regions of the spectrum are adequate to cover between them most of the FIR range Using such a coupler respective output powers of 70 mW and 85 mW are obtained with the 70 μm and 118 μm CH3OH lasers operating on the EH11 mode for ≃16 W pump power injected in the FIR cavity. The variable reflector is also used to determine the unsaturated laser gain.

Key words

intrinsic silicon double semiconductor Fabry-Perot CW optically pumped FIR lasers,... 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.V. Loewenstein, D.R. Smith and R.L. Morgan, Appl. Opt.12, 398 (1973).Google Scholar
  2. [2]
    F. Julien and J-M. Lourtioz, 4th International Conference on Infrared and Millimeter Waves and their Applications, Miami (1979), Conf. Digest p. 274.Google Scholar
  3. [3]
    R. Ulrich, T.J. Bridges and M.A. Pollack, Appl. Opt.9, 2511 (1970).Google Scholar
  4. [4]
    T.Y. Chang and J.D. Mc Gee, Appl. Phys. Lett.19, 103 (1971).Google Scholar
  5. [5]
    C.O. Weiss, Appl. Phys.13, 383 (1977).Google Scholar
  6. [6]
    J-M. Lourtioz, J. Pontnau and F. Julien, Simple and accurate techniques to measure wavelengths of CW FIR optically pumped lasers, Infrared Phys., in press.Google Scholar
  7. [7]
    M. Yamanaka, Rev. Laser Eng. (Japan)3, 253 (1976).Google Scholar
  8. [8]
    J.O. Henningsen, IEEE J. Quantum ElectronQE-13, 435 (1977).Google Scholar
  9. [9]
    T.C. Rich and D.A. Pinnow, Appl. Phys. Lett.,20, (264) (1972).Google Scholar
  10. [10]
    D.T. Hodges, F.B. Foote and R.D. Reel, IEEE J. Quant. Electron,QE-13, 491 (1977).Google Scholar
  11. [11]
    E.J. Danielewicz, T.K. Plant and T.A. de Temple, Opt. Commun.13, 366 (1975).Google Scholar
  12. [12]
    K.M. Evenson et al., IEEE J. Quant. Electron.,QE-13 442 (1977).Google Scholar
  13. [13]
    M.S. Durschlag, S.J. Petuchowski and T.A. De Temple, Infrared Physics, (in press).Google Scholar
  14. [14]
    J.J. Jimenez et al., Millimeter and Submilimeter wave propagation and circuits — Munich (1978) —Agard Conference Proceedings, p. 19.Google Scholar
  15. [15]
    J-M. Lourtioz et al., Revue de Physique Appliquée,14, 323 (1979).Google Scholar
  16. [16]
    G. Busse, E. Basel and A. Pfaller, Appl. Phys.12, 387 (1977).Google Scholar
  17. [17]
    E.A.J. Marcatili and R.A. Schmeltzer, Bell Syst. Techn.43, 1783, (1964).Google Scholar
  18. [18]
    M.R. Schubert, M.S. Durschlag and T.A. De Temple, IEEE J. of Quant. electron.QE-13, 455 (1977).Google Scholar
  19. [19]a)
    J.J. Degnan, Appl. Opt.12, 1026 (1973).Google Scholar
  20. [19]b)
    J.J. Degnan, Appl. Phys.11, 1 (1976).Google Scholar
  21. [20]
    J. Heppner, C.O. Weiss, U. Hübner and G. Shinn, IEEE, J. Quant. Electron., to be published in April 1980.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • F. Julien
    • 1
  • J-M. Lourtioz
    • 1
  1. 1.Institut d'Electronique FondamentaleUniversité Paris XIOrsayFrance

Personalised recommendations