Tunable far-infrared radiation from optically pumped potassium Rydberg transitions

  • W. A. Bookless
  • L. W. Hrubesh
  • C. G. Stevens
  • E. A. Rinehart


We report the generation of tunable far-infrared radiation by the optical pumping of potassium metal vapor to the13p Rykberg state. Subsequent cascade by stimulated emission is measured at several wavelengths between 76 and 146 cm−1 with a conversion quantum efficiency of greater than 10 percent. Emission observed in this region are tuned up to 18 GHz by the application of a pulsed Stark field across a parallel-plate heat pipe. Cascade branching to the 11d to 10f transition at 146 cm−1 is observed which can be tuned up to 7 cm−1 in our device. Similar branching following excitation up to the 18 p state is shown to provide almost complete tunability in the far-infrared region.

Key words

far-infrared laser Stark shift potassium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. R. Shen, “Non-Linear Infrared Generation,” in Topics in Applied Physics, Vol 16 (Springer-Verlag, 1977).Google Scholar
  2. 2.
    W. Gordy and R. L. Cook, MICROWAVE MOLECULAR SPECTRA (J. Wiley & Sons, New York, 1970), Chapter 1.Google Scholar
  3. 3.
    R. L. Aggarwal and B. Lax, Ref. “Non-Linear Infrared Generation,” in Topics in Applied Physics, Vol 16 (Springer-Verlag, 1977), Chap. 2.Google Scholar
  4. 4.
    D. H. Martin and K. Mizuno, Adv. in Phys.25, 211, 1976.Google Scholar
  5. 5.
    S. Jacobs, G. Gould and P. Rabinowitz, Phys. Rev. Lett,7, 415 (1961).Google Scholar
  6. 6.
    J. J. Wynne and P. P. Sorokin, J. Phys.B8, L37 (1975).Google Scholar
  7. 7.
    D. R. Grischkowsky, J. R. Lankard and P. P. Sorokin, IEEE J. Quantum ElectronicsQE13, 392 (1977).Google Scholar
  8. 8.
    T. Y. Chang and T. J. Bridges, Opt. Commun.1, 423 (1970).Google Scholar
  9. 9.
    A. M. F. Lau, W. K. Bischel, C. K. Rhodes, and R. M. Hill, Appl. Phys. Lett.29, 245 (1976).Google Scholar
  10. 10.
    T. Y. Chang, T. C. Damen, V. T. Nguyen, J. D. McGee, T. J. Bridges, Appl. Phys. Lett.32, 633 (1978).Google Scholar
  11. 11.
    C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data8, 1109 (1979).Google Scholar
  12. 12.
    F. Gounand, J. Cuvellier, P. R. Fournier, and S. Berlande, J. de. Phys.37, L-169 (1976).Google Scholar
  13. 13.
    F. Gounand, P. R. Fournier, J. Berlande, Phys. Rev.A15, 2212 (1977).Google Scholar
  14. 14.
    C. E. Theodosiov, J. Phys. B13, L1 (1980).Google Scholar
  15. 15.
    T. F. Gallagher, W. E. Cooke, and S. A. Edelstein, Phys. Rev.A17, 904 (1978).Google Scholar
  16. 16.
    E. M. Anderson and V. A. Zilitis, Optics and Spectr. (USSR)16, 99 (1964).Google Scholar
  17. 17.
    See article by T. Y. Chang, Chapter 6, reference “Non-Linear Infrared Generation,” in Topics in Applied Physics, Vol 16 (Springer-Verlag, 1977).Google Scholar
  18. 18.
    M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev.A20, 2251 (1979).Google Scholar
  19. 19.
    A. Khadjavi, A. Lurio, W. Happer, Phys. Rev.167, 128 (1968).Google Scholar
  20. 20.
    I. I. Sobelman, INTRODUCTION TO THE THEORY OF ATOMIC SPECTRA (Pergamon Press, New York, 1972).Google Scholar
  21. 21.
    C. G. Stevens, unpublished results.Google Scholar
  22. 22.
    G. G. Bratescu, Revue de Phys. (Bucharest)4, 33 (1959).Google Scholar
  23. 23.
    M. L. Zimmerman, private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • W. A. Bookless
    • 1
  • L. W. Hrubesh
    • 1
  • C. G. Stevens
    • 1
  • E. A. Rinehart
    • 2
  1. 1.Chemistry and Materials Science DepartmentLawrence Livermore National LaboratoryLivermore
  2. 2.Department of PhysicsUniversity of WyomingLaramie

Personalised recommendations