Skip to main content
Log in

Trends in quantification in histochemistry and cytochemistry

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Conclusion

In this limited review, every relevant technique and many personal credits could not be included, but it is apparent that there has been a steady increase in the armamentarium of applicable techniques for quantification, each with its special uses and limitations. As the trend continues, and beyond the more obvious future which will see consolidation and extension of existing experimental approaches with an increasing use of automation and computerization, we can only guess at what new departures and remarkable innovations will emerge to provide leaps forward toward the goal—the goal of combining localization with quantitation of biological substances and activitiesin situ to reveal the chemistry, and from it the function, of the cell, its substructures and products, in the normal and altered living state.

No one would disagree with Cournand who said in the concluding remarks of his 1956 Nobel Prize lecture on the pulmonary circulation, ‘Now what of the future? Perhaps the only incontestable prophecy that can be made is that advances in methodology and advances in understanding go hand in hand.’ What we can also predict is that the quest of our goal will continue to hold fascination and excitement for those lucky enough to be involved in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr, G. F. (1973) Determination of the dry mass of small biological objects by quantitative electron microscopy. InMicromethods in Molecular Biology (edited byNeuhoff, V.), pp. 257–284. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Bahr, G. F., Engler, W. F. &Mazzone, H. M. (1976) Determination of the mass of viruses by quantitative electron microscopy.Q. Rev. Biophys. 9, 459–89.

    Google Scholar 

  • Barer, R. (1952) Interference microscopy and mass determination.Nature, Lond. 169, 366–7.

    Google Scholar 

  • Barer, R. (1966) Phase contrast and interference microscopy in cytology. InPhysical Techniques in Biological Research (edited byPollister, A. W.), 2nd edn, Vol. IIIA, pp. 1–56 New York, London: Academic Press.

    Google Scholar 

  • Bitensky, L. &Chayen, J. (1978) Quantitative cytochemistry: The basis of sensitive bioassays, for comparison of bio- and immuno-reactive hormone values.Clin Chem. 24, 1399–407.

    Google Scholar 

  • Böhm, N. (1972) Fluorescence cytophotometric determination of DNA. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 1, pp. 89–141. London, Syndey, Toronto: Wiley Interscience.

    Google Scholar 

  • Brolin, S. E. &Hjerten, S. (1977) Improved microassay with the NADH-induced light reaction, using purified enzymes fromAchromobacter fischeri.Molec. Cell. Biochem. 17, 61–73.

    Google Scholar 

  • Caspersson, T. (1940) Methods for the determination of the absorption spectra of cell structures.J. R. Microsc. Soc. 60, 8–25.

    Google Scholar 

  • Caspersson, T. (1950)Cell Growth and Cell Function, A Cytochemical Study. New York: Norton.

    Google Scholar 

  • Chandler, J. A. (1975) Electron probe X-ray microanalysis in cytochemistry. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 2, pp. 307–427. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Commoner, B. (1948) Quantitative determination of the pigment content of single cells by means of a new microspectrophotometer.Ann. Missouri Bot., Garden 35, 239–54.

    Google Scholar 

  • Coons, A. H. (1958) Fluorescent antibody methods. InGeneral Cytochemical Methods (edited byDanielli, J. F.), Vol. 1, pp. 399–422. New York, London: Academic Press.

    Google Scholar 

  • De Lerma, B. (1958) Die Anwendung von Fluoreszenzlicht in der Histochemie. InHandbuch der Histochemie (edited byGraumann, W. andNeumann, K. H.), Vol. 1, pp. 78–159. Stuttgart: Fischer Verlag.

    Google Scholar 

  • De Luca, M. A. (1978) (editor)Bioluminescence and Chemiluminescence, Methods of Enzymology Vol. 57. New York, London: Academic Press.

    Google Scholar 

  • Dörmer, P. (1973) Quantitative autoradiography at the cellular level. InMicromethods in Molecular Biology (edited byNeuhoff, V.), pp. 347–393. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Duijndam, W. A. L., Smeulders, A. W. M., van Duijan, P. &Verweij, A. C. (1980a) Optical errors in scanning stage absorbance cytophotometry. I. Procedures for correcting apparent integrated absorbance values for distributional, glare, and diffraction errors.J. Histochem. Cytochem. 28, 388–94.

    Google Scholar 

  • Duijndam, W. A. L., Van Duijn, P. &Riddersma, S. H. (1980b) Optical errors in scanning stage absorbance cytophotometry. II. Application of correction factors for residual distributional error, glare and diffraction error in practical cytophotometry.J. Histochem. Cytochem. 28, 395–400.

    Google Scholar 

  • Edström, J.-E. (1964) Microextraction and microelectrophoresis for determination and analysis of nucleic acids in isolated cellular units. InMethods in Cell Physiology (edited byPrescott, D. M.), Vol. 1, pp. 417–447. New York, London: Academic Press.

    Google Scholar 

  • Edström, J.-E. &Neuhoff, V. (1973) Micro-electrophoresis for RNA and DNA base analysis. InMicromethods in Molecular Biology (edited byNeuhoff, V.), pp. 215–256. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Engström, A. (1966) X-ray microscopy and X-ray absorption analysis. InPhysical Techniques in Biological Research (edited byPollister, A. W.), 2nd edn, Vol. IIIA, pp. 87–171, New York, London: Academic Press.

    Google Scholar 

  • Fujita, S. (1980) Recent progress in quantitative fluorescence histochemistry.Acta Histochem. Cytochem. 13, 40–8.

    Google Scholar 

  • Giacobini, E. (1975) The use of microchemical techniques for the identification of new transmitter molecules in neurons.J. Neurosci. Res. 11, 1–18.

    Google Scholar 

  • Glick, D. (1961)Quantitative Chemical Techniques of Histo-and Cytochemistry. Vol. 1. New York, London: Wiley Interscience.

    Google Scholar 

  • Glick, D. (1963)Quantitative Chemical Techniques of Histo- and Cytochemistry. Vol. 2. New York, London: Wiley Interscience.

    Google Scholar 

  • Glick, D. (1977a) The contribution of microchemical methods of histochemistry to the biological sciences.J. Histochem. Cytochem. 25, 1087–101.

    Google Scholar 

  • Glick, D. (1977b) Luminometry. A new technique for microchemical quantitative histochemistry.Basic Appl. Histochem. 21, 23–7.

    Google Scholar 

  • Glick, D. (1977c) Measurement of mass in quantitative histochemistry and cytochemistry. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 3, pp. 103–138. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Glick, D. (1978) The future of clinical microchemical analysis.Clin. Chem. 24, 189–92.

    Google Scholar 

  • Glick, D., Linderstrøm-Lang, K. U. &Holter, H. (1964)Laboratory Technique in Biology and Medicine (edited byEmmel, V. M. andCowdry, E. V.), 4th edn, pp. 234–240. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Glick, D. &Marich, K. W. (1975) Potential for clinical use of the analytical laser microprobe for element measurement.Clin. Chem. 21, 1238–44.

    Google Scholar 

  • Grossbach, U. &Kasch, E. (1977) Microelectrophoresis of proteins at the cellular level. InTechniques of Biochemical Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 3, pp. 81–101. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Haaijman, J. J. (1977)Quantitative immunofluorescence microscopy, methods and applications. Ph.D. thesis, University of Leiden.

  • Hale, A. J. (1958)The Interference Microscope. Edinburgh: Livingstone.

    Google Scholar 

  • Haljamäe, H. &Waldman, A. A. (1972) Flame photometry at the cell level. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 1, pp. 233–263, New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Hevesy, G. (1948)Radioactive Indicators, Their Application in Biochemistry, Animal Physiology and Pathology. New York: Interscience.

    Google Scholar 

  • Hillenkamp, F., Unsöld, R., Kaufmann, R. &Nitsche, R. (1975) A high sensitivity laser microprobe mass analyzer.Appl. Phys. 8, 341–8.

    Google Scholar 

  • Holter, H. (1943) Techniques of the Cartesian diver.C. r. Trav. Lab. Carlsberg, Sér. chim. 24, 399–478.

    Google Scholar 

  • Holter, H. (1961) The Cartesian diver. InGeneral Cytochemical Methods (edited byDanielli J. F.), Vol. 2, pp. 93–129. New York, London: Academic Press.

    Google Scholar 

  • Holter, H. &Zeuthen, E. (1966) Manometric techniques for single cells. InPhysical Techniques in Biological Research (edited byPollister, A. W.), 2nd edn, Vol. IIIA, pp. 251–317, New York, London: Academic Press.

    Google Scholar 

  • Hösli, P. (1977) Quantitative assays of enzyme activity in single cells: Early prenatal diagnosis of genetic disorders.Clin. Chem. 23, 1476–84.

    Google Scholar 

  • Hösli, P. (1978) Quantitative ultramicro-scale immunoenzymic method for measuring Ig antigenic determinants in single cells.Clin. Chem. 24, 1325–30.

    Google Scholar 

  • Hultborn, R. &Hydén, H. (1974) Microspectrophotometric determination of nerve cell respiration at high potassium concentration.Expl Cell Res. 87, 346–50.

    Google Scholar 

  • Hydén, H. &Lange, P. W. (1968) Micro-electrophoretic determination of protein and protein synthesis in the 10−9 to 10−7 gram range.J. Chromat. 35, 336–51.

    Google Scholar 

  • Jablonski, E. &de Luca, M. (1979) Properties and uses of immobilized light-emitting enzyme systems fromBeneckea harveyi.Clin. Chem. 25, 1622–7.

    Google Scholar 

  • Jongkind, J. F., Ploem, J. S., Reuser, A. J. &Galjaard, H. (1974) Enzyme assays at the single cell level using a new type of microfluorimeter.Histochemistry 40, 221–9.

    Google Scholar 

  • Kaufmann, R. &Wieser, P. (1980) Laser microprobe mass analysis (LAMMA) in particle analysis. InCharacterization of Particles, National Bureau of Standards Special Publication 533, pp. 199–223. Washington: U. S. Government Printing Office.

    Google Scholar 

  • Kohen, E., Thorell, B., Kohen, C. &Salmon, J.-M. (1975) Microfluorometric monitoring of dehydrogenase systems in the intact cell. InTechniques of biochemical and Biophysial Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 2, pp. 157–195. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Levi, H. (1957) A discussion of recent advances towards quantitative autoradiography.Expl Cell Res. Suppl.4, 207–21.

    Google Scholar 

  • Levi, H., Rogers, A. W., Weis-Bentzon, M. &Nielsen, A. (1963) On the quantitative evaluation of autoradiograms.Danske Videnskab. Selskab. Mat.-Phys. Medd. 33, 1–51.

    Google Scholar 

  • Linderstrøm-Lang, K. (1937a) Dilatometric ultramicroestimation of peptidase activity.Nature, Lond. 139, 713.

    Google Scholar 

  • Linderstrøm-Lang, K. (1937b) Principle of the Cartesian diver applied to gasometric technique.Nature, Lond. 140, 108.

    Google Scholar 

  • Lowry, O. H. &Passonneau, J. V. (1972)A Flexible System of Enzymatic Analysis. New York, London: Academic Press.

    Google Scholar 

  • McCaman, R. E. (1968) Application of tracers to quantitative histochemical and cytochemical studies. InAdvances in Tracer Methodology (edited byRothchild, S.), Vol. 4, pp. 187–202. New York: Plenum.

    Google Scholar 

  • Melamed, M. R., Mullaney, P. F. &Mendelsohn, M. L. (editors)(1979)Flow Cytometry and Sorting. New York, Chichester, Brisbane, Toronto, Wiley.

    Google Scholar 

  • Mendelsohn, M. L. (1966) Absorption cytophotometry: Comparative methodology for heterogeneous objects, and the two-wavelength method. InIntroduction to Quantitative Cytochemistry (edited byWeid, G. L.), pp. 201–214. New York, London: Academic Press.

    Google Scholar 

  • Naora, H. (1958) Microspectrophotometry in visible light range.Handbuch der Histochemie (edited byGraumann, W. andNeumann, K. H.), Vol. 1, pp. 192–219. Stuttgart: Fischer Verlag.

    Google Scholar 

  • Nelson, S. C. &Barchas, J. D. (1975) Applications of radiographic dielectric track registration techniques in biology and medicine. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 2, pp. 439–500. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

  • Neuhoff, V. (1973) Micro-electrophoresis on polyacrylamide gels.Micromethods in Molecular Biology (edited byNeuhoff, V.), pp. 1–83. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Pelc, S. R. (1958) Autoradiography as a cytochemical method with special reference to C14 and S35. InGeneral Cytochemical Methods (edited byDanielli, J. F.) Vol. 1, pp. 279–316. New York, London: Academic Press.

    Google Scholar 

  • Perry, R. P. (1964) Quantitative autoradiography.Methods in Cell Physiology (edited byPrescott, D. M.) Vol. 1, pp. 305–326. New York, London: Academic Press.

    Google Scholar 

  • Pollister, A. W. &Ornstein, L. (1959) The photometric chemical analysis of cells. InAnalytical Cytology (edited byMellors, R. C.), pp. 431–518. New York, Toronto, London: McGraw-Hill.

    Google Scholar 

  • Puget, K., Michelson, A. M. &Averameas, S. (1977) Light emission techniques for the microestimation of femtogram levels of peroxidase.Analyt. Biochem. 79, 447–56.

    Google Scholar 

  • Rotman, B. &Papermaster, B. W. (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters.Proc. natn. Acad. Sci., U.S.A. 55, 134–41.

    Google Scholar 

  • Ruch, F. &Leemann, U. (1973) Cytofluorometry. InMicromethods in Molecular Biology (edited byNeuhoff, V.), pp. 329–346, Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Sandritter, W. (1958) Ultraviolettmikrospektrophotometrie. InHandbuch der Histochemie (edited byGraumann, W. andNeumann, K. H.), Vol. 1, pp. 220–238. Stuttgart: Fischer Verlag.

    Google Scholar 

  • Sandritter, W. (1966) Methods and results in quantitative cytochemistry. InIntroduction to Quantitative Cytochemistry (edited byWied, G. L.), pp. 159–182. New York, London: Academic Press.

    Google Scholar 

  • Sandritter, W. (1980) DNA cytophotometry in cellular pathology.Acta Histochem. Cytochem. 13, 35–9.

    Google Scholar 

  • Seitz, W. R. &Neary, M. P. (1976) Recent advances in bioluminescence and chemiluminescence assay. InMethods of Biochemical Analysis (edited byGlick, D.), Vol. 23, pp. 161–188. New York, London: Wiley Interscience.

    Google Scholar 

  • Silverman, L., Frommhagen, L. H. &Glick, D. (1967) Measurement of influenza virusantibody reaction by quantitative electron microscopy.J. Cell Biol. 35, 61–7.

    Google Scholar 

  • Silverman, L. &Glick, D. (1969a) The reactivity and staining of tissue proteins with phosphotungstic acid.J. Cell Biol. 40, 761–7.

    Google Scholar 

  • Silverman, L. &Glick, D. (1969b) Measurement of protein concentration by quatitative electron microscopy.J. Cell Biol. 40, 773–8.

    Google Scholar 

  • Stanley, P. E. (1971) Determination of subpicomole levels of NADH and FMN using bacterial luciferase and the liquid scintillation spectrometer.Analyt. Biochem. 39, 441–53.

    Google Scholar 

  • Sternberger, L. A. (1979)Immunocytochemistry. 2nd edn, pp. 54–56, 157–159. New York, Chichester, Brisbane, Toronto: Wiley.

    Google Scholar 

  • Swift, H. &Rasch, E. (1956) Microphotometry with visible light. InPhysical Techniques in Biological Research (edited byOster, G. andPollister, A. W.), Vol. 3, pp. 353–400: New York, London: Academic Press.

    Google Scholar 

  • van Duijn, P. (1976) Prospects for microscopical cytochemistry.Histochem. J. 8, 653–76.

    Google Scholar 

  • van Duijn, P. (1978) Cytochemical markers in flow cytometry with special reference to specificity problems. InPulse Cytophotometry, Part III, pp. 193–206. Gent: European Press.

    Google Scholar 

  • von Sengbush, G., Couwenberg, C., Kuhner, J. &Muller, U. (1976) Fluorogenic substrate turnover in single living cells.Histochem. J. 8, 341–50.

    Google Scholar 

  • Wechsung, R., Hillenkamp, F., Kaufmann, R., Nitsche, R., Unsöld, E. &Vogt, H. (1978) LAMMA—A new laser-microprobe-mass-analyzer.Microscopia Acta Suppl.2, 281–96.

    Google Scholar 

  • Wettermark, G., Stymne, H., Brolin, S. E. &Petersson, B. (1975) Substrate analyses in single cells. 1. Determination of ATP.Analyt. Biochem. 63, 293–307.

    Google Scholar 

  • Williams, D. C. &Seitz, W. R. (1976) Automated chemiluminescence method for determining the reduced form of nicotinamide adenine dinucleotide coupled to measurement of lactate dehydrogenase activity.Analyt. Chem. 48, 1478–81.

    Google Scholar 

  • Zeuthen, E. &Hamburger, K. (1977) Microgasometry with single cells using ampulla divers operated in density gradients. InTechniques of Biochemical and Biophysical Morphology (edited byGlick, D. andRosenbaum, R. M.), Vol. 3, pp. 59–79. New York, London, Sydney, Toronto: Wiley Interscience.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glick, D. Trends in quantification in histochemistry and cytochemistry. Histochem J 13, 227–240 (1981). https://doi.org/10.1007/BF01006881

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01006881

Keywords

Navigation