Skip to main content
Log in

The estimation of the residual capacity of sealed lead-acid cells using the impedance technique

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The problem of estimating the residual usable energy of a lead-acid cell has been intensified by the introduction of fully sealed units. These rely on the recombination of gaseous oxygen produced during overcharge at the positive electrode with the active material at the negative electrode. This introduction has removed the possibility of electrolyte density measurements, third electrode measurements and restricted residual capacity assessments to the two cell terminals. A method for this process is described using a parameter based on a characteristic frequency. The parameter is also a useful measure of cell ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R SOL :

Ohmic resistance of cell (Ω)

θ:

Charge-transfer resistance of positive and negative electrodes (Ω)

CL :

Double-layer capacitance of both positive and negative electrodes (F)

σ:

Warburg diffusion (ΩS−1/2)

C EXT :

External series capacitor in analogue Fig. 5 (F)

R EXT :

External resistor in parallel withC EXT in the anologue circuit Fig. 5 (Ω)

IND :

Inductor in Fig. 5 representing the geometrical effects of the cell at high frequencies (Henries)

R IND :

External resistor in parallel with IND in the analogue circuit Fig. 5 (Ω)

λ:

Roughness factor allowing for the porosity of both electrodes

References

  1. S. A. G. R. Karunathilaka, N. A. Hampson and R. Leek,Surface Technol. 13 (1981) 339.

    Google Scholar 

  2. N. A. Hampson, S. A. G. R. Karunathilaka and R. Leek,J. Appl. Electrochem. 10 (1980) 3.

    Google Scholar 

  3. S. A. G. R. Karunathilaka, N. A. Hampson, T. P. Hass, R. Leek, T. J. Sinclair, ——Ibid.11 (1981) 573.

    Google Scholar 

  4. M. Hughes, R. T. Barton, S. A. G. R. Karunathilaka, N. A. Hampson and R. Leek ——ibid.15 (1985) 129.

    Google Scholar 

  5. W. G. Marshall, R. Leek, N. A. Hampson and G. Lovelock,J. Power Sources 13 (1984) 75.

    Google Scholar 

  6. S. A. G. R. Karunathilaka, R. T. Barton, M. Hughes and N. A. Hampson,J. Appl. Electrochem. 15 (1985) 251.

    Google Scholar 

  7. J. Bialacki, N. A. Hampson and J. Pearson,Surface Technol. 23 (1984) 117.

    Google Scholar 

  8. N. A. Hampson, S. Kelly and K. Peters,J. Appl. Electrochem. 11 (1981) 751.

    Google Scholar 

  9. S. Cotgreave, N. A. Hampson and S. A. G. R. Karunathilaka, Interim Report to MoD Contract No. ER/a/9/4/2170.095/RSRE.

  10. N. A. Hampson and M. J. Willars,Surface Technol. 7 (1978) 247.

    Google Scholar 

  11. R. de Levie in “Advances in Electrochemical Engineering” Vol. 6, edited by P. Delahay, Interscience, New York (1967) p. 329.

    Google Scholar 

  12. H. A. Laitinen and J. E. B. Randles,Trans. Faraday. Soc. 51 (1955) 54.

    Google Scholar 

  13. S. Kelly, N. A. Hampson and S. A. G. R. Karunathilaka,Surface Technol. 13 (1981) 349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, M., Barton, R.T., Karunathilaka, S.A.G.R. et al. The estimation of the residual capacity of sealed lead-acid cells using the impedance technique. J Appl Electrochem 16, 555–564 (1986). https://doi.org/10.1007/BF01006850

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01006850

Keywords

Navigation