Blut

, Volume 37, Issue 1, pp 1–5 | Cite as

Pyruvate kinase-catalyzed ATP-formation in human red blood cell membranes

  • W. Schröter
  • W. Tillmann
  • G. Söndgen
Original Papers

Summary

Previous studies on the linkage between enzymatically catalyzed ATP-generating reactions in the red blood cell membrane and the sodium and potassium transport in the control of overall glycolysis of human erythrocytes were controversial. In this study a significant amount of pyruvate kinase activity is shown to be localized within the membrane. Membrane fragments produce 20.5μmol of ATP per 1010 membranes per hour from phosphoenolpyruvate and ADP. The kinetics of the membrane-localized pyruvate kinase do not differ from those of the enzyme from hemolysates. The results clearly document the presence of the second ATP-generating enzyme of glycolysis, pyruvate kinase, in human red blood cell membranes. The main fraction of the enzyme is deeply hidden in the lipid layers of the membrane. It can be demasked by mechanical desintegration of membranes at high levels of activity. It is suggested that the amount of the membrane-localized fraction of pyruvate kinase is related to the clinical severity of the hemolytic process in pyruvate kinase deficiency.

Key words

Pyruvate kinase deficiency Erythrocyte membrane 

Pyruvatkinase-katalysierte ATP-Bildung in der Erythrozytenmembran

Zusammenfassung

Bisherige Untersuchungen über die Beziehungen zwischen enzymatisch-katalysierter ATP-Bildung in der Erythrozytenmembran und dem Natrium- und Kaliumtransport haben widersprüchliche Ergebnisse gezeigt. Die vorliegende Arbeit zeigt, daß die Membran menschlicher Erythrozyten eine nicht unbedeutende Menge Pyruvatkinase enthält. Membranbruchstücke bilden aus Phosphoenolpyruvat und ADP 20,5μMol ATP pro 101-Membranen pro Stunde. Die Kinetik der in der Membran lokalisierten Pyruvat0 kinasereaktion unterscheidet sich nicht von der des cytoplasmatischen Enzyms. Die Ergebnisse beweisen, daß die Pyruvatkinase, das zweite ATP-bildende Enzym der Glykolyse, in den Membranen menschlicher Erythrozyten vorhanden ist. Die Membranfraktion des Enzyms ist zwischen den Lipiden der Membran verborgen. Sie kann durch mechanische Zerstörung der Membran demaskiert werden. Es wird vermutet, daß die Menge der in der Membran lokalisierten Pyruvatkinase in Beziehung zur Schwere des hämoyltischen Prozesses beim Pyruvatkinasemangel steht.

Schlüsselwörter

Pyruvatkinasemangel Erythrozytenmembran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aledort, L.M., Weed, R.I., Troup, S.B.: Ionic effects on firefly bioluminescence assay of red blood cell ATP. Analyt. Biochem.17, 268–277 (1966)Google Scholar
  2. 2.
    Chillar, R.K., Beutler, E.: Explanation for the apparent lack of ouabain inhibition of pyruvate production in hemolysates: The “backward” PGK reaction. Blood47, 507–512 (1976)Google Scholar
  3. 3.
    Dodge, J.T., Mitchell, C., Hanahan, D.I.: The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem.100, 119–130 (1963)Google Scholar
  4. 4.
    Feig, S.A., Segel, G.B., Shohet, S.B., Nathan, D.G.: Energy metabolism in human erythrocytes. II. Effects of glucose depletion. J. Clin. Invest.51, 1547–1554 (1972)Google Scholar
  5. 5.
    Garrahan, P.J.: Ion movements in red blood cells. In: Membranes and Ion Transport. Bittac, E.E. (ed.), p. 185–214. London: Wiley-Interscience 1970Google Scholar
  6. 6.
    Hoffman, J.F.: Molecular aspects of the Na+, K+-pump in red blood cells. In: Organization of Energy-Transducing Membranes. Nakao, M., Packer, L. (eds.), p. 9–21. Tokyo: Univ. Tokyo Press 1973Google Scholar
  7. 7.
    Lineweaver, H., Burk, D.: The determination of enzyme dissociation constants. J. Am. Chem. Soc.56, 658–666 (1934)Google Scholar
  8. 8.
    Oski, F.A., Naiman, J.L., Blum, S.F., Zarkowsky, H.S., Whaun, J., Shohet, S.B., Green, A., Nathan, D.G.: Congenital hemolytic anemia with high-sodium, low-potassium red cells. New Engl. J. Med.280, 909–916 (1969)Google Scholar
  9. 9.
    Parker, J.C., Hoffman, J.F.: The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J. Gen. Physiol.50, 893–916 (1967)Google Scholar
  10. 10.
    Segel, G.B., Feig, S.A., Glader, B.E., Müller, A., Dutcher, P., Nathan, D.G.: Energy metabolism in human erythrocytes: The role of phosphoglycerate kinase in cation transport. Blood46, 271–278 (1975)Google Scholar
  11. 11.
    Schrier, S.L.: Organization of enzymes in human erythrocyte membranes. Am. J. Physiol.210, 139–145 (1966)Google Scholar
  12. 12.
    Schröter, W.: Clinical heterogeneity of erythrocyte pyruvate kinase deficiency. Evidence of an impaired utilization of ATP in a clinically severe form. Helv. Paediat. Acta27, 417–488 (1972)Google Scholar
  13. 13.
    Schröter, W., Tillmann, W.: Membrane-localized pyruvate kinase of red blood cells in hemolytic anemia associated with pyruvate kinase deficiency. Klin. Wschr.53, 1101–1106 (1975)Google Scholar
  14. 14.
    Shohet, S.B.: Hemolysis and changes in erythrocyte membrane lipids. New Engl. J. Med.286, 577–583, 638–644 (1972)Google Scholar
  15. 15.
    Tillmann, W., Cordua, A., Schröter, W.: Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes. Biochim. Biophys. Acta382, 157–171 (1975)Google Scholar
  16. 16.
    Whittam, R., Chipperfield, A.R.: The reaction mechanism of the sodium pump. Biochim. Biophys. Acta415, 149–171 (1975)Google Scholar
  17. 17.
    Zarkowsky, H.S., Nathan, D.G.: Influence of erythrocyte membrane adenosine triphosphatase on the metabolism of hemolysates. J. Lab. Clin. Med.76, 231–239 (1970)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. Schröter
    • 1
  • W. Tillmann
    • 1
  • G. Söndgen
    • 1
  1. 1.Kinderklinik und Poliklinik der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations