Advertisement

Journal of Applied Electrochemistry

, Volume 16, Issue 6, pp 947–963 | Cite as

Electrochemical study of liquid-solid mass transfer in packed bed electrodes with upward and downward co-current gas-liquid flow

  • A. Storck
  • M. A. Latifi
  • G. Barthole
  • A. Laurent
  • J. C. Charpentier
Article

Abstract

Hydrodynamic and mass transfer parameters (pressure drop, gas and liquid hold-up, liquid-solid mass transfer coefficients) have been measured for porous electrodes with upward or downward co-current gas-liquid flow by means of several electrochemical techniques. The influence of the most important parameters (packing diameter, gas and liquid flow rates) and of the hydrodynamic flow regimes, has been studied. It is found that in the trickle flow regime the limiting current densities depend only on the liquid flow rates (with no measurable influence of the gas). In the upward flow configuration, the strong turbulence generated by the ascending gas bubbles leads to a sharp increase of current densities with the gas flow rate. A comparison between both configurations is presented.

Keywords

Flow Regime Mass Transfer Coefficient Electrochemical Study Electrochemical Technique Liquid Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Ac

active electrode packing area

aeg

geometrical electrode packing area

as

specific surface area of particle

av

specific surface area of packing

cs

bulk concentration of reactive species

dp

particle diameter

D

dispersion coefficient

DL

diffusion coefficient of reacting species in the liquid phase

f

ratio of mass transfer coefficient with and without gas bubbles

F

Faraday constant

G

superficial mass velocity of gas

I

electric current

IL

limiting electrolysis current

i

current density

JD

Chilton-Colburn factor

kd

true liquid to particle mass transfer coefficient

kd0

apparent liquid to particle mass transfer coefficient without gas bubble

kd

apparent liquid to particle mass transfer coefficient with gas bubble (kd=kdϕ)

L

superficial mass velocity of liquid

Re

Reynolds number

Re

equivalent resistance of electrolyte

Re0

equivalent resistance of electrolyte without gas

Sc

Schmidt number

Sh

Sherwood number

t, t′, t1 t2

time

ts

mean residence time

Uc

cell voltage

U0

cell voltage at equilibrium

uL

liquid interstitial velocity

uGO

gas superficial linear velocity

uLO

liquid superficial linear velocity

Z

distance between the two detectors

β

hold-up

ΔHZ

pressure drop per unit packing height

ε

bed porosity

ŋa

anodic overpotential

ŋc

cathodic overpotential

λ

flow parameter, defined in Equation 6

μ

dynamic viscosity

ν

kinematic viscosity

ϱ

density

σ

surface tension

ϕ

fraction of particle area wetted by

ψ

liquid flow parameter defined in Equation 7

Subscripts

air

air

G

gas

L

liquid

t

total

W

water

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Storck, M. A. Enriquez, M. Roger and F. Coeuret,Electrochim. Acta 27 (1982), 293.Google Scholar
  2. [2]
    A. Storck, P. M. Robertson and N. Ibl,24 (1979) 373.Google Scholar
  3. [3]
    R. Alkire and P. K. Ng,J. Electrochem. Soc. 124 (1977) 1220.Google Scholar
  4. [4]
    C. Oloman and A. P. Watkinson,J. Appl. Electrochem. 9 (1979) 117.Google Scholar
  5. [5]
    ,Can. J. Chem. Eng. 54 (1976) 314.Google Scholar
  6. [6]
    C. Oloman,J. Electrochem. Soc. 126 (1979) 1885.Google Scholar
  7. [7]
    N. L. Bathia and A. P. Watkinson,Can. J. Chem. Eng. 57, (1979) 631.Google Scholar
  8. [8]
    G. Kreysa, J. M. Brannen, W. Kochanek and G. Linzbach,J. Appl. Electrochem. 5 (1985) 639.Google Scholar
  9. [9]
    G. H. Sedahmed,8 (1978) 399.Google Scholar
  10. [10]
    D. J. Economou and R. C. Alkire,J. Electrochem. Soc. 132 (1985) 601.Google Scholar
  11. [11]
    N. Ibl, R. Kind and E. Adam,An. Quim. 71 (1975) 1008.Google Scholar
  12. [12]
    L. Sigrist, O. Dossenbach and N. Ibl,Int. J. Heat Mass Transfer 22 (1979) 1008.Google Scholar
  13. [13]
    N. Ibl,Electrochim. Acta 24 (1979) 1103.Google Scholar
  14. [14]
    Gh. Delaunay, A. Storck, A. Laurent and J. C. Charpentier,Ind. Eng. Chem. Process. Des. Dev. 19 (1980) 514.Google Scholar
  15. [15]
    F. Hine, ‘Electrolytic Gas Evolution’, Paper presented at the Annual Meeting of the International Society of Electrochemistry, Berkeley, USA, August 1984.Google Scholar
  16. [16]
    R. Aris,Chem. Eng. Sci. 9 (1939) 266.Google Scholar
  17. [17]
    J. L. Turpin and R. L. Huntington,AIChE J. 13 (1967) 1196.Google Scholar
  18. [18]
    Pittsburgh Energy Research Center (PERC), Quarterly reports (1976).Google Scholar
  19. [19]
    V. Specchia, S. Sicardi and A. Gianetto,AIChE J. 20 (1974) 646.Google Scholar
  20. [2]
    Y. Sato, T. Hirose and T. Ida,Kagaku Kogaku 38 (1973) 543.Google Scholar
  21. [21]
    M. Y. Saada,Periodica Polytech. Chem. Eng. 19 (1975) 317.Google Scholar
  22. [22]
    S. K. Achwal and J. B. Stepanek,Chem. Eng. J. 12 (1976) 69.Google Scholar
  23. [23]
    G. J. Stiegel and Y. T. Shah,Ind. Eng. Chem. Process. Des. Dev. 16 (1977) 37.Google Scholar
  24. [24]
    S. Fukushima and K. Kusaka,J. Chem. Eng. Jap. 12 (1979) 296.Google Scholar
  25. [25]
    O. Baker,Oil Gas J. 53 (1954) 185.Google Scholar
  26. [26]
    V. W. Weekman and J. E. Meyers,AIChE J. 10 (1964) 951.Google Scholar
  27. [27]
    Y. Sato, T. Hirose, F. Takahashi, M. Toda and Y. Hashiguchi,J. Chem. Eng. Jap. 6 (1973) 315.Google Scholar
  28. [28]
    J. C. Charpentier and M. Favier,AIChE J. 81 (1975) 1213.Google Scholar
  29. [29]
    V. Specchia, A. Rossini and G. Baldi,Chem. Eng. Sci. 32 (1977) 515.Google Scholar
  30. [30]
    A. Gianetto, G. Baldi and S. Sicardi,AIChE J. 24 (1978) 1087.Google Scholar
  31. [31]
    N. Midoux, M. Favier and J. C. Charpentier,J. Chem. Eng. Jap. 9 (1976) 350.Google Scholar
  32. [32]
    J. G. Schwartz, E. Weger and M. P. Dudukovic,AIChE J. 22 (1976) 894.Google Scholar
  33. [33]
    B. I. Morsi, N. Midoux and J. C. Charpentier,24 (1978) 357.Google Scholar
  34. [34]
    S. Sicardi, G. Baldi, V. Specchia, I. Maggarino and A. Gianetto,Chem. Eng. Sci. 36 (1981) 226.Google Scholar
  35. [35]
    X. Onda, E. Sada and Y. Murase,AIChE J. 5 (1959) 235.Google Scholar
  36. [36]
    R. Krauze and M. SerwinskiIngyniera Chemiczna 1 (1971) 415.Google Scholar
  37. [37]
    T. Hirose, Y. Mori and Y. Sato,J. Chem. Eng. Jap. 9 (1976) 220.Google Scholar
  38. [38]
    S. Goto and J. M. Smith,AIChE J. 21 (1975) 706.Google Scholar
  39. [39]
    S. Goto, G. Levec and J. M. Smith,Ind. Eng. Chem. Process. Des. Dev. 14 (1975) 473.Google Scholar
  40. [40]
    C. N. Satterfield, M. W. Van Eek and G. S. Bliss,AIChE J. 24 (1978) 709.Google Scholar
  41. [41]
    J. A. Ruether, C. Yang and W. Hayduk,Ind. Eng. Chem. Process. Des. Dev. 19 (1980) 103.Google Scholar
  42. [42]
    A. Dharwadkar and N. D. Sylvester,AIChE J. 23 (1977) 376.Google Scholar
  43. [43]
    V. Specchia, G. Baldi and A. Gianetto,Ind. Eng. Chem. Process. Des. Dev. 17 (1978) 362.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • A. Storck
    • 1
  • M. A. Latifi
    • 1
  • G. Barthole
    • 1
  • A. Laurent
    • 1
  • J. C. Charpentier
    • 1
  1. 1.Laboratoire des Sciences du Génie ChimiqueCNRS-ENSICNancy CedexFrance

Personalised recommendations