The Histochemical Journal

, Volume 13, Issue 1, pp 109–124 | Cite as

The axonal reticulum in the neurons of the superior cervical ganglion of the rat as a direct extension of the Golgi apparatus

  • J. Quatacker


Adrenergic neurons from the superior cervical ganglion of the rat have been studied with the chromaffin reaction and the zinc iodide-osmium tetroxide method. Phosphotungstic acid staining at low pH and a combined acid phosphatase reaction and phosphotungstic acid staining have also been performed on glycolmethacrylate-embedded tissue. The results indicate that phosphotungstic acid-positive elements lacking acid phosphatase activity are present at the inner side of the Golgi apparatus. These elements give rise directly to reticular differentiations, carrying catecholamines, or to tubular extensions, representing the origin of the axonal reticulum. On these tubules, reticular differentiations can again be formed at any level. In the cell body, the differentiations are mainly found close to the neurolemma. In the axons, they are especially abundant at the axon terminals. Large granules may be associated with the reticular differentiations and small and large granules may detach from them.

It is concluded that the whole catecholamine-producing and/or-storing system in sympathetic neurons can be considered as a direct extension of the Golgi apparatus, set up for local catecholamine synthesis. The relative importance of small and large granules along this system may reflect the functional status of the nerve cell.


Catecholamine Acid Phosphatase Golgi Apparatus Axon Terminal Sympathetic Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambron, R. T. &Treistman, S. N. (1977) Glycoproteins are modified in the axon of R2, the giant neuron ofAplysia californica, after intra-axonal injection of (3H)N-acetylgalactosamine.Brain Research 121, 287–309.Google Scholar
  2. Barka, T. &Anderson, P. J. (1965)Histochemistry, Theory, Practice and Bibliography. New York: Harper and Row.Google Scholar
  3. Blaschke, E., Bergquist, U. &Uvnäs, B. (1976) Identification of mucopolysaccharides in catecholamine-containing subcellular particle fractions from various rat, cat and ox tissues.Acta physiol. scand. 97, 110–20.Google Scholar
  4. Broadwell, R. D. (1980) Cytochemical localization of acid hydrolases in neurons of the mammalian central nervous system.J. Histochem. Cytochem. 28, 87–9.Google Scholar
  5. De Potter, W. P. &Chubb, I. W. (1977) Biochemical observations on the formation of small noradrenergic vesicles in the splenic nerve of the dog.Neuroscience 2, 167–74.Google Scholar
  6. Droz, B. (1979) Elucidation of axonal transport by radioautography.J. Histochem. Cytochem. 27, 1510–1.Google Scholar
  7. Droz, B., Rambourg, A. &Koenig, H. L. (1975) The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport.Brain Research 93, 1–13.Google Scholar
  8. Eränkö, L. (1972a) Postnatal development of histochemically demonstrable catecholamines in the superior cervical ganglion of the rat.Histochem. J. 4, 225–36.Google Scholar
  9. Eränkö, O. (1972b). Light and electron microscopic histochemical evidence of granular and non-granular storage of catecholamines in the sympathetic ganglion of the rat.Histochem. J. 4, 213–24.Google Scholar
  10. Geffen, L. B. &Rush, R. A. (1968) Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores.J. Neurochem. 15, 259–30.Google Scholar
  11. Geyer, G. (1973)Ultrahistochemie. Jena: VEB Gustav Fischer Verlag.Google Scholar
  12. Geyer, G. (1977) Elektronenmikroskopische Histochemie. Teil 1. InHandbuch der Histochemie (edited byGraumann, W. andNeumann, K.), p. 464. Stuttgart, New York: Gustav Fischer Verlag.Google Scholar
  13. Griffith, D. L. &Bondareff, W. (1973) Localisation of thiamine pyrophosphatase in synaptic vesicles.Am. J. Anat. 136, 549–56.Google Scholar
  14. Hervönen, A. &Kaverna, L. (1973) The effect of 17-β-estradiol on the fine structure of the adrenergic axons of the rabbit myometrium.Z. Zellforsch. 144, 219–29.Google Scholar
  15. Hökfelt, T. (1973) On the origin of small adrenergic storage vesicles: evidence for local formation in nerve endings after chronic reserpine treatment.Experientia 29, 580–2.Google Scholar
  16. Hökfelt, T., Johansson, O., Ljungedahl, Ä. Lundberg, J. M. &Schultzberg, M. (1980) Peptidergic neurones.Nature, Lond. 284, 515–21.Google Scholar
  17. Holtzman, E. (1977) The origin and fate of secretory packages, especially synaptic vesicles.Neuroscience 2, 327–55.Google Scholar
  18. Holtzman, E., Schacher, S., Evans, J. &Teichberg, S. (1977) Origin and fate of the membranes of secretion granules and synaptic vesicles: membrane circulation in neurons, gland cells and retinal photoreceptors. InCell Surface Review, Vol. 4. (edited byPoste, G. andNicolson, G. L.), pp. 165–246. Amsterdam: Elsevier/North-Holland.Google Scholar
  19. Lane, N. J. &Swales, L. S. (1976) Interrelationship between Golgi GERL and synaptic vesicles in the nerve cells of insect and gastropod ganglia.J. Cell Sci. 22, 435–54.Google Scholar
  20. Leduc, E. H. &Bernhard, W. (1967) Recent modifications of the glycolmethacrylate embedding procedure.J. Ultrastruct. Res. 19, 196–9.Google Scholar
  21. Markov, D., Rambourg, A. &Droz, B. (1976) Smooth endoplasmic reticulum and fast axonal transport of glycoprotein, an electron microscope radioautographic study of thick sections after heavy metal impregnation.J. Microsc. Biol. Cell. 25, 57–60.Google Scholar
  22. Matthews, M. R. (1973) An ultrastructural study of axonal changes following constriction of postganglionic branches of the superior cervical ganglion of the rat.Phil. Trans. R. Soc., Ser. B 264, 479–508.Google Scholar
  23. Matus, A. I. (1970) Ultrastructure of the superior cervical ganglion fixed with zinc iodide and osmium tetroxide.Brain Research 17, 195–203.Google Scholar
  24. Novikoff, P. M., Novikoff, A. B., Quintana, N. &Hauw, J. J. (1971) Golgi apparatus, GERL and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry.J. Cell Biol. 50, 857–86.Google Scholar
  25. Quatacker, J. R. (1979) Different aspects of membrane differentiation at the inner side (GERL) of the Golgi apparatus in rabbit luteal cells.Histochem. J. 11, 391–416.Google Scholar
  26. Quatacker, J. &De Potter, W. (1978) Relationship between Golgi apparatus and axonal reticulum in sympathetic ganglion cells.Electron Microscopy, 1978. 9th Int. Cong. on Electron Microscopy, Toronto., Vol. H, pp. 598–9.Google Scholar
  27. Rambourg, A., Hernandez, W. &Leblond, C. P. (1969) Detection of complex carbohydrates in the Golgi apparatus of rat cells.J. Cell Biol. 40, 395–414.Google Scholar
  28. Richards, J. G. &Tranzer, J. P. (1975) Localisation of amine storage sites in the adrenergic cell body. A study of the superior cervical ganglion of the rat by fine structural cytochemistry.J. Ultrastruct. Res. 53, 204–16.Google Scholar
  29. Sherhany, A. A., Ambron, R. T. &Schwartz, J. H. (1979) Membrane glycolipids: regional synthesis and axonal transport in a single identified neuron ofAplysia californica.Science 203, 78–80.Google Scholar
  30. Stelzner, D. J. (1971) The relationship between synaptic vesicles, Golgi apparatus and smooth endoplasmic reticulum: A developmental study using the zinc iodide-osmium technique.Z. Zellforsch. 120, 332–45.Google Scholar
  31. Thiery, J. P. (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique.J. Microscopie 6, 987–1018.Google Scholar
  32. Tranzer, J. P. &Richards, J. G. (1976) Ultrastructural cytochemistry of biogenic amines in nervous tissue: methodologic improvements.J. Histochem. Cytochem. 24, 1178–93.Google Scholar
  33. Trifaro, J. M., Duerr, A. D. &Pinto, J. E. B. (1976) Membranes of the adrenal medulla: a comparison between the membrane of the Golgi apparatus and chromaffin granules.Mol. Pharmacol. 12, 536–45.Google Scholar
  34. Tsukita, S. &Ishikawa, H. (1980) The movement of membranous organelles in axons.J. Cell Biol. 84, 513–30.Google Scholar
  35. Vrensen, G. &De Groot, D. (1974) Osmium-zinc iodide staining and the quantitative study of central synapses.Brain Research 74, 131–42.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1981

Authors and Affiliations

  • J. Quatacker
    • 1
  1. 1.Laboratorium voor Pathologische OntleedkundeAkademisch ZiekenhuisGentBelgium

Personalised recommendations