The Histochemical Journal

, Volume 14, Issue 6, pp 981–997 | Cite as

Relationship among fibre type, myosin ATPase activity and contractile properties

  • Leo C. Maxwell
  • John A. Faulkner
  • Richard A. Murphy


At least two types of skeletal muscle myosin have been described which differ in ATPase activity and stability in alkaline or acidic media. Differences in ATPase characteristics distinguish Type I and Type II fibres histochemically. In this study, ATPase activity of myosin from muscles of several species with known histochemical and contractile properties has been determined to test the hypothesis that (1) myosin ATPase activity, (2) histochemical determination of fibre types and (3) maximum shortening velocity, all provide equivalent estimates of contractile properties in muscles of mixed fibre types. Maximum shortening velocity appears to be proportional to ATPase activity as expected from previous reports by Barany. However, both myosin ATPase and the maximum shortening velocity exhibit curvilinear relationships to the fraction of cross-sectional area occupied by Type II fibres. Therefore, we reject the hypothesis and conclude that histochemically determined myofibrillar ATPase does not accurately reflect the intrinsic ATPase activity or shortening velocity in muscles of mixed fibre types. Our data are consistent with the presence of more than two myosin isozymes or with a mixture of isozymes within single muscle fibres.


Skeletal Muscle Muscle Fibre ATPase Activity Acidic Medium Fibre Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barany, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. gen. Physiol. 50, 197–216.Google Scholar
  2. Barany, M. K., Barany, T., Reckard, T. &Volpe, A. (1965) Myosin of fast and slow muscles of the rabbit.Archs Biochem. Biophys. 109, 185–91.Google Scholar
  3. Barnard, R. M., Edgerton, V. R., Furakawa, T., Peter, J. B. (1971) Histochemical, biochemical and contractile properties of red, white and intermediate fibers.Am. J. Physiol. 220, 410–4.Google Scholar
  4. Brooke, M. H. &Kaiser, K. K. (1970a) Muscle fiber types: how many and what kind?Arch. Neurol. 23, 369–79.Google Scholar
  5. Brooke, M. H. &Kaiser, K. K. (1970b) Three ‘myosin adenosine triphosphatase’ systems: the nature of their pH lability and sulfhydryl dependence.J. Histochem. Cytochem. 18, 670–2.Google Scholar
  6. Buller, A. J., Eccles, J. C. &Eccles, R. M. (1960) Differentiation of fast and slow muscles in the cat hind limb.J. Physiol., Lond. 150, 399–416.Google Scholar
  7. Buller, A. J. &Lewis, D. M. (1965) Further observations on the differentiation of skeletal muscles in the kitten hind limb.J. Physiol., Lond. 176, 355–70.Google Scholar
  8. Burke, R. E. (1967) Motor unit types of cat triceps surae muscleJ. Physiol., Lond. 193, 141–60.Google Scholar
  9. Burke, R. E., Levine, P. N., Zajac, F. E. III, Tsairis, P. &Engel, W. K. (1971) Mammalian motor units: physiological correlates of three types in cat gastronemius.Science 174, 709–12.Google Scholar
  10. Carlson, H. (1978a) Morphology and contraction properties of cat lumbar back muscles.Acta physiol. scand. 103, 180–97.Google Scholar
  11. Carlson, H. (1978b) Histochemical fiber composition of lumbar back muscles in the cat.Acta physiol. scand. 103, 198–209.Google Scholar
  12. Close, R. I. (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development.J. Physiol., Lond. 173, 74–95.Google Scholar
  13. Close, R. I. (1965) The relation between intrinsic speed of shortening and duration of the active state of muscle.J. Physiol., Lond. 180, 542–59.Google Scholar
  14. Close, R. I. (1972) Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.Google Scholar
  15. Cohen, D. M. &Murphy, R. A. (1978) Differences in cellular contractile protein contents among porcine smooth muscles. Evidence for variation in the contractile system.J. gen. Physiol. 72, 369–80.Google Scholar
  16. Davies, A. S. &Dunn, H. M. (1972) Histochemical fiber types in the mammalian diaphragm.J. Anat. 112, 41–60.Google Scholar
  17. Edgerton, V. R. &Simpson, D. R. (1969) The intermediate fiber of rats and guinea pigs.J. Histochem. Cytochem. 17, 828–38.Google Scholar
  18. Eisenberg, B. R. &Kuda, A. M. (1974a) Stereological analysis of mammalian skeletal muscle I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.Google Scholar
  19. Eisenberg, B. R. &Kuda, A. M. (1974b) Stereological analysis of mammalian skeletal muscle II. White vastus muscle of the adult guinea pig.J. Cell Biol. 60, 755–65.Google Scholar
  20. Faulkner, J. A., Maxwell, L. C., Ruff, J. L. &White, T. P. (1979) The diaphragm as a muscle. Contractile properties.Ann. Rev. Respir. Disease 119, 89–92.Google Scholar
  21. Fitts, R. H. &Holloszy, J. O. (1977) Contractile properties of rat soleus muscle: effects of training and fatigue.Am. J. Physiol. Cell Physiol. 2, C86-C91.Google Scholar
  22. Fitts, R. H., Winder, W. W., Brooke, M. H., Kaiser, K. K. &Holloszy, J. O. (1980) Contractile, biochemical and histochemical properties of thyrotoxic rat soleus muscle.Am. J. Physiol. 238, C15-C20.Google Scholar
  23. Gauthier, G. F. (1967) On the localization of sarcotubular ATPase activity in mammalian skeletal muscle.Histochemie 11, 97–111.Google Scholar
  24. Gauthier, G. F. &Lowey, S. (1977) Polymorphism of myosin among skeletal muscle fiber types.J. Cell Biol. 74, 760–79.Google Scholar
  25. Gauthier, G. F., Lowey, S. &Hobbs, A. W. (1978) Fast and slow myosin in developing muscle fibres.Nature, Lond. 274, 25–9.Google Scholar
  26. Gauthier, G. F. &Lowey, S. (1979) Distribution of myosin isoenzymes among skeletal muscle fiber types.J. Cell Biol. 81, 10–25.Google Scholar
  27. Gonyea, W. &Bonde-Petersen, F. (1977) Contraction properties and fiber types of some forelimb and hind limb muscles in the cat.Expl Neurol. 57, 637–44.Google Scholar
  28. Gordon, G. &Phillips, C. G. (1949) Slow and rapid components in a flexor muscle.J. Physiol. 110, 6P.Google Scholar
  29. Guth, L., &Samaha, F. J. (1972) Erroneous interpretations which may result from application of the ‘myofibrillar ATPase’ histochemical procedure to developing muscle.Expl Neurol. 34, 465–76.Google Scholar
  30. Hall-Craggs, E. C. B. (1968) The contraction times and enzyme activity of two rabbit laryngeal muscles.J. Anat. 102, 241–55.Google Scholar
  31. Henneman, E. &Olson, C. B. (1965) Relations between structure and function in the design of skeletal muscle.J. Neurophysiol. 28, 581–98.Google Scholar
  32. Layne, E. (1957) Spectrophotometric and turbidimetric methods for measuring proteins.Meth. Enzym. 3, 447–54.Google Scholar
  33. Lieberman, D. A., Faulkner, J. A., Craig, A. B. Jr &Maxwell, L. C. (1973) Performance and histochemical composition of guinea pig and human diaphragm.J. appl. Physiol. 34, 233–7.Google Scholar
  34. Lutz, H., Weber, H. &Jenny, E. (1979) Fast and slow myosin within single skeletal muscle fibers of adult rabbits.Nature, Lond. 281, 142–4.Google Scholar
  35. Maxwell, L. C., Barclay, J. K., Mohrman, D. E. &Faulkner, J. A. (1977) Physiological characteristics of skeletal muscles of dogs and cats.Am. J. Physiol. 233, C14–8.Google Scholar
  36. Maxwell, L. C., Faulkner, J. A. &Lieberman, D. A. (1973) Histochemical manifestations of age and endurance training in skeletal muscle fibers.Am. J. Physiol. 344, 356–61.Google Scholar
  37. McCarter, R. D., Radicke, D. &Yu, B. P. (1977) A model preparation for studying fast mammalian skeletal muscles.Proc. Soc. exp. Biol. Med. 156, 40–5.Google Scholar
  38. Murphy, R. A. &Beardsley, A. C. (1974) Mechanical properties of the cat soleus muscle in situ.Am. J. Physiol. 227, 1008–13.Google Scholar
  39. Olson, C. B. &Swett, C. P. (1966) A functional and histochemical characterization of motor units in a heterogenous muscle (flexor digitorum longus) of the cat.J. Comp. Neurol. 128, 475–97.Google Scholar
  40. Pette, D., Vrbova, G. &Whalen, R. C. (1979) Independent development of contractile properties and myosin light chains in embryonic chick fast and slow muscle.Pflugers Arch. 378, 251–7.Google Scholar
  41. Pierobon-Bormioli, S., Sartore, S., Dalla Libera, L., Vitadello, M. &Schiaffino, S. (1981) Fast' isomyosins and fiber types in mammalian skeletal muscle.J. Histochem. Cytochem. 29, 1179–88.Google Scholar
  42. Ranatunga, K. W. (1979) Potentiation of the isometric twitch and mechanism of tension recruitment in mammalian skeletal muscle.Expl Neurol. 63, 266–76.Google Scholar
  43. Robbins, N., Karpati, G. &Engel, W. K. (1969) Histochemical and contractile properties in the cross innervated guinea pig soleus muscle.Arch. Neurol. 20, 318–26.Google Scholar
  44. Rockstein, M. &Herron, P. W. (1951) Colorimetric determination of inorganic phosphate in microgram quantities.Analyt. Chem. 23, 1500–1.Google Scholar
  45. Samaha, F. J., Guth, L. &Albers, R. W. (1970) Phenotypic differences between the actomyosin ATPase of the three fiber types of mammalian skeletal muscle.Expl Neurol. 26, 120–5.Google Scholar
  46. Sartore, S., Pierobon-Bormioli, S. &Schiaffino, S. (1978) Immunochemical evidence of myosin polymorphism in the chicken heart.Nature, Lond. 274, 82–3.Google Scholar
  47. Weeds, A. G., Hall, R. &Spurway, N. C. S. (1975) Characterization of myosin light chains from histochemically identified fibers of rabbit psoas muscle.FEBS Lett. 49, 320–4.Google Scholar
  48. Wills, J. H. (1972) Speed of responses of various muscles of cats.Am. J. Physiol. 136, 623–8.Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • Leo C. Maxwell
    • 1
  • John A. Faulkner
    • 2
  • Richard A. Murphy
    • 3
  1. 1.Department of PhysiologyThe University of Texas Health Science CenterSan AntonioUSA
  2. 2.Department of PhysiologyThe University of MichiganAnn ArborUSA
  3. 3.Department of PhysiologyThe University of VirginiaCharlottesvilleUSA

Personalised recommendations