Skip to main content
Log in

Biosynthesis, transport and secretion of immunoglobulin in plasma cells

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Conclusions

Evidence has been accumulated that immunoglobulin is transported from the site of synthesis through the rough membranes into the smooth membranes and out of the cell. Parallel to this migration stepwise addition of different sugar residues to immunoglobulins takes place at different subcellular sites. The immediate secretion of [3H]sugar-labelled immunoglobulins (Fig. 3), in contrast to the lag in the secretion of the newly synthesized [3H]leucine-labelled immunoglobulin (Fig. 2) suggests that the protein accepts carbohydrate long after the synthesis, and some of it, shortly before leaving the cell. The form of immunoglobulin complete in the carbohydrate component (with two fucose residues) found secreted from plasma cells cannot be found inside. These results, therefore, support the hypothesis that the attachment of carbohydrate may be requisite for the transport of the protein to the outside of the cell. It will be discussed in a forthcoming paper (in preparation) what experimental evidence can be marshalled against the role of carbohydrate attachment as the sole requisite for the secretion of immunoglobulin from plasma cells. The results obtained by us with the immunoglobulin-producing cells show striking similarities to those of the thyroglobulin-producing cellular system (Herscovics, 1969; Whuret al., 1969).

Finally, it should be pointed out that only a very crude separation of subcellular components can be anticipated to occur on sucrose density gradients of the sort used in our studies. It is, therefore, all the more surprising that such a clear difference has been observed in the two separated main subcellular fractions, the smooth and the rough membranes. While the techniques for the preparation and separation of subcellular fractions of secretory cells clearly need to be improved, it may well prove useful to use the transport of immunoglobulin and the varying composition of its carbohydrate component as a marker in the identification of subcellular fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askonas, B. A. &Williamson, A. R. (1967). Biosynthesis and assembly of immunoglobulin G.Cold Spring Harb. Symp. quant. Biol. 32, 223–31.

    Google Scholar 

  • Blobel, G. &Potter, V. R. (1967). Studies on free and membrane-bound ribosomes in rat liver.J. mol. Biol. 26, 279–92.

    Google Scholar 

  • Bosman, C. &Feldman, J. D. (1968). Cytology of immunologic memory.J. exp. Med. 128, 293–304.

    Google Scholar 

  • Bosman, C. andFeldman, J. D. (1970). The proportion and structure of cells forming antibody, G and M Immunoglobulins, and G and M antibodies.Cell Immunol. 1, 31–50.

    Google Scholar 

  • Caro, L. G. &Palade, G. E. (1964). Protein synthesis, storage and discharge in the pancreatic exocrine cells.J. Cell. Biol. 20, 473–95.

    Google Scholar 

  • Choi, Y. S., Knopf, P. M. &Lennox, E. S. (1971). Intracellular transport and secretion of an immunoglobulin light chain.Biochemistry 10, 668–79.

    Google Scholar 

  • Cioli, D. & Baglioni, C. (1967). Studies on the synthesis of the peptide chains of human immunoglobulins.Nobel Symp.3,Gamma Globulins, Ed. J. Killander, Interscience Publishers, 401–20.

  • Cioli, D. & Lennox, E. S. (1970). Abstract, 6th Internatl.Congr. Biochem., Interlaken, Switzerland.

  • Dallner, G., Siekevitz, P. &Palade, G. E. (1966). Biogenesis of endoplasmic reticulum membranes. I Structural and chemical differentiation in developing rat hepatocyte.J. Cell Biol. 30, 73–96.

    Google Scholar 

  • Eylar, E. H. (1966). On the biological role of glycoproteins.J. theor. Biol. 10, 89–113.

    Google Scholar 

  • Helgeland, L. (1965). Incorporation of radioactive glucosamine into submicrosomal fractions isolated from rat liver.Biochim. Biophys. Acta 101, 106–12.

    Google Scholar 

  • Helmreich, E., Kern, M. &Eisen, H. N. (1961). The secretion of antibody by isolated lymph node cells.J. biol. Chem. 236, 464–73.

    Google Scholar 

  • Helmreich, E., Kern, M. &Eisen, H. N. (1962). Observations on the mechanism of secretion of γ-globulins by isolated lymph node cells.J. biol. Chem. 237, 1925–31.

    Google Scholar 

  • Herscovics, A. (1969). Biosynthesis of Thyroglobulin. Incorporation of (1-14C) Galactose, (1-14C) Mannose and (4,5-3H2) Leucine into soluble proteins by rat thyroidsin vitro.Biochem. J. 112, 709–19.

    Google Scholar 

  • Horwitz, A. L. &Dorfman, A. (1968). Subcellular sites for synthesis of chondromucoprotein of cartilage.J. Cell Biol. 38, 358–68.

    Google Scholar 

  • Jamieson, J. D. &Palade, G. E. (1966). Role of the golgi complex in the intracellular transport of secretory proteins.Proc. natn. Acad. Sci. U.S.A. 55, 424–31.

    Google Scholar 

  • Jamieson, J. D. &Palade, G. E. (1967). Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the golgi complex. II. Transport to condensing vacuoles and zymogen granules.J. Cell. Biol. 34, 577–96 and 597–615.

    Google Scholar 

  • Kern, M., Helmreich, E. &Eisen, H. N. (1961). The solubilization of microsomal antibody activity by the specific interaction between the crystallizable fraction of γ-Globulin and lymph node microsomes.Proc. natn. Acad. Sci. U.S.A. 47, 767–78.

    Google Scholar 

  • Knopf, P. M., Choi, Y. S. &Lennox, E. S. (1969). The kinetics of secretion of a myeloma protein.Behringwerke-Mitteilungen 49, 155–68.

    Google Scholar 

  • Knopf, P. M., Parkhouse, R. M. E. &Lennox, E. S. (1967). Biosynthetic units of an immunoglobulin heavy chain.Proc. nath. Acad. Sci. U.S.A. 58, 2288–95.

    Google Scholar 

  • Lawford, G. R. &Schachter, H. (1966). Biosynthesis of glycoprotein by liver. The incorporationin vivo of14C-Glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions.J. biol. Chem. 241, 5408–18.

    Google Scholar 

  • Leduc, E. H., Avrameas, S. &Bouteille, M. (1968). Ultra-structural localization of antibody in differentiating plasma cells.J. exp. Med. 127, 109–18.

    Google Scholar 

  • Melchers, F. (1969). The attachment site of carbohydrate in a mouse immunoglobulin light chain.Biochemistry 8, 938–47.

    Google Scholar 

  • Melchers, F. (1969). The carbohydrate composition of a myeloma protein from different subcellular fractions of plasma cells.Behringwerk-Mitteilungen 49, 169–83.

    Google Scholar 

  • Melchers, F. (1970). Biosynthesis of the carbohydrate protion of immunoglobulins. Kinetics of synthesis and secretion of [34] leucine-,[34] galactose-and [34] mannose-labelled myeloma protein by two plasma cell tumours.Biochem. J. 119, 765–72.

    Google Scholar 

  • Melchers, F. (1971). Biosynthesis of the carbohydrate portion of immunoglobulin. Radiochemical and chemical analysis of the carbohydrate moieties of two myeloma proteins purified from different subcellular fractions of plasma cells.Biochemistry 10, 653–59.

    Google Scholar 

  • Melchers, F. &Knopf, P. M. (1967). Biosynthesis of the carbohydrate portion of immunoglobulin chains: possible relation to secretion.Cold Spring Harb. Symp. quant. Biol. 32, 255–62.

    Google Scholar 

  • Molnar, J., Robinson, G. B. &Winzler, R. J. (1965). Biosynthesis of Glycoproteins. IV. The subcellular sites of incorporation of glucosamine-1-14C into glycoprotein in rat liver.J. biol. Chem. 240, 1882–8.

    Google Scholar 

  • De Petris, S., Karlsbad, G. &Pernis, B. (1963). Localization of antibodies in plasma cells by electron microscopy.J. exp. Med. 177, 849–62.

    Google Scholar 

  • Rifkind, R. A., Osserman, E. F., Hsu, K. C. &Morgan, C. (1962). The intracellular distribution of gamma globulin in a mouse plasma cell tumour (X5563) as revealed by fluorescence and electron microscopy.J. exp. Med. 116, 423–32.

    Google Scholar 

  • Scharff, M. D., Shapiro, A. L. &Ginsberg, B. (1967). The synthesis, assembly and secretion of gamma globulin polypeptide chains by cells of a mouse plasma cell tumour.Cold Spring Harb. Symp. quant. Biol. 32, 235–42.

    Google Scholar 

  • Spiegelberg, H. L., Abel, C. A., Fishkin, B. G. &Grey, H. M. (1970). Localization of the carbohydrates within the variable region of light and heavy chains of human γ-G myeloma proteins.Biochemistry 9, 4217–23.

    Google Scholar 

  • Sox, H. C., Jr. &Hood, L. (1970). Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains.Proc. natn. Acad. Sci. U.S.A. 66, 975–82.

    Google Scholar 

  • Swenson, R. M. &Kern, M. (1967). Synthesis and secretion of β-globulin by lymph node cells.J. biol. Chem. 242, 3242–4.

    Google Scholar 

  • Whur, P., Herscovics, A. &Leblond, C. P. (1969). Radio-automatic visualization of the incorporation of Galactose-3H and Mannose-3H by rat thyroidsin vitro in relation to the stages of thyroglobulin synthesis.J. Cell Biol. 43, 289–311.

    Google Scholar 

  • Widnell, C. C. &Unkeless, J. C. (1968). Partial purification of a lipoprotein with 5′-nucleotidase activity from membranes of rat liver cells.Proc. natn. Acad. Sci. U.S.A. 61, 1050–7.

    Google Scholar 

  • Zagury, D., Uhr, J. W., Jamieson, J. D. &Palade, G. E. (1970). Immunoglobulin synthesis and secretion. II. Radioautographic studies of sites of addition of carbohydrate moieties and intracellular transport.J. Cell Biol. 46, 52–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melchers, F. Biosynthesis, transport and secretion of immunoglobulin in plasma cells. Histochem J 3, 389–397 (1971). https://doi.org/10.1007/BF01005021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01005021

Keywords

Navigation