Advertisement

The Histochemical Journal

, Volume 4, Issue 4, pp 267–303 | Cite as

Theoretical and practical aspects of glutaraldehyde fixation

  • David Hopwood
Review

Synopsis

This review first considers the many structures put forward for glutaraldehyde, and the purification of the commercial material for chemical, histological and histochemical studies. Some practical and theoretical problems of tissue fixation with glutaraldehyde, including artefacts, are then discussed. The chemical reactions with amino acids and proteins are considered next together with the physical changes in the proteins during the reactions. The known reactions of glutaraldehyde with nucleic acids, lipids and mucosubstances are explored briefly.

Keywords

Lipid Nucleic Acid Glutaraldehyde Practical Aspect Physical Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexa, G., Chisalita, D. &Chirita, G. (1971). Reaction of dialdehyde with functional groups in collagen.Rev. Tech. Ind. Cuir. 63, 5–6.Google Scholar
  2. Amsterdam, A. &Schramm, M. (1966). Rapid release of zymogen granule protein by osmium tetroxide and its retention by glutaraldehyde.J. Cell Biol. 29, 199–207.Google Scholar
  3. Anderson, P. J. (1967). Purification and quantitation of glutaraldehyde and its effects on several enzyme activities in skeletal muscle.J. Histochem. Cytochem. 15, 652–61.Google Scholar
  4. Arborgh, B., Ericsson, J. L. E. &Helminen, H. (1971). Inhibition of renal acid phosphatase and arylsulphatase activity by glutaraldehyde fixation.J. Histochem. Cytochem. 19, 449–51.Google Scholar
  5. Aso, C. &Aito, Y. (1962). Studies on the polymerization of bifunctional monomers. II polymerization of glutaraldehyde.Makromol. Chem. 58, 195–203.Google Scholar
  6. Axén, R., Myrin, P. Å. &Jansson, J. C. (1970). Chemical fixation of chymotrypsin to water insolubilized cross linked Dextran (Sephadex) and solubilization of the enzyme derivatives by means of a dextranase.Biopolymers 9, 401–13.Google Scholar
  7. Bahr, G. F. (1954). Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances.Exp. Cell Res. 7, 457–89.Google Scholar
  8. Baker, J. R. (1960).Principles of Biological Microtechnique. London: Methuen.Google Scholar
  9. Beauvillain, J. C. (1970). Influence de divers fixateurs sur la structure fine de L'éminence médiane de Souris.C. R. Soc. Biol. 164, 1032–34.Google Scholar
  10. Berns, K. I. &Thomas, C. A. (1961). A study of single polynucleotide chains derived from T2 and T4 bacteriophage.J. Mol. Biol. 3, 289–300.Google Scholar
  11. Bishop, W. H. &Richard, F. M. (1968). Isoelectric point of a protein in the cross linked state:-lactoglobulin.J. Mol. Biol. 33, 415–21.Google Scholar
  12. Bloem, E. (1968). Thin layer chromatography of aldehydes in leather.J. Soc. leath. Trades Chem. 52, 204–7.Google Scholar
  13. Blumenfeld, O. O., Paz, M. A., Gallop, P. M. &Seifter, S. (1963). The nature, quantity and mode of attachment of hexoses in ichthyocol.J. biol. Chem. 238, 3835–9.Google Scholar
  14. Bodian, D. (1970). An electron microscopic characterization of synaptic vesicles by means of controlled aldehyde fixation.J. Cell Biol. 44, 115–24.Google Scholar
  15. Bohman, S. O. &Maunsbach, A. B. (1970). Effects on tissue fine structure of variations in colloid osmotic pressure of glutaraldehyde fixatives.J. Ultrastruct. Res. 30, 195–208.Google Scholar
  16. Bone, Q. &Denton, E. J. (1971). The osmotic effects of electron microscope fixatives.J. Cell Biol. 49, 571–81.Google Scholar
  17. Bone, Q. &Ryan, K. P. (1972). Osmolarity of osmium tetroxide and glutaraldehyde fixatives.Histochem. J. 4, 331–47.Google Scholar
  18. Bowes, J. A. &Cater, C. W. (1965). Cross linking of collagen.J. Appl. Chem. (London)15, 296–304.Google Scholar
  19. Bowes, J. A. &Cater, C. W. (1968). The interaction of aldehydes with collagen.Biochem biophys. Acta. 168, 341–52.Google Scholar
  20. Brooks, B. R. &Klamerth, O. L. (1968). Interaction of DNA with bifunctional aldehydes.Europ. J. Biochem. 5, 178–82.Google Scholar
  21. Carstensen, E. L., Aldridge, W. G., Child, S. Z., Sullivan, P. &Brown, H. H. (1971). Stability of cells fixed with glutaraldehyde and acrolein.J. Cell. Biol. 50, 529–32.Google Scholar
  22. Casey, E. J. (1962).Biophysics: Concepts and Mechanisms. New York: Reingold.Google Scholar
  23. Cejkova, J. &Brettschneider, I. (1970). Glutaraldehyde fixation of corneal acid mucopolysaccharides.Ophthalmic Res. 1, 149–55.Google Scholar
  24. Chambers, R. W., Bowling, M. C. &Grimley, P. M. (1968). Glutaraldehyde fixation in routine histopathology.Archs. Path. 85, 18–30.Google Scholar
  25. Chiang, J., Kowada, M., Ames, A., Wright, R. L. &Majno, G. (1968). Cerebral ischaemia III vascular changes.Am. J. Path. 52, 455–65.Google Scholar
  26. Chisalita, D., Chirita, G. &Alexa, G. (1971). Kinetics of dialdehyde combination with the reactive groups of collagen.Ind. Usoara 18, 269–81 (Roum).Google Scholar
  27. Clark, M. A. &Ackerman, G. A. (1971). Alteration of nuclear and nucleolar pyroantimonateosmium reactivity by glutaraldehyde fixation.J. Histochem. Cytochem. 19, 388–90.Google Scholar
  28. Cleland, W. W. (1967). In:Biological Chemistry (eds. H. R. Mahler & E. H. Cordes), p. 224. London: Harper & Row.Google Scholar
  29. Clift, F. P. &Cook, R. P. (1932). A method of determination of some biologically important aldehydes and ketones with special reference to pyruvic acid and methyl glyoxal.Biochem. J. 26, 1788–99.Google Scholar
  30. Coupland, R. E. &Hopwood, D. (1966). The mechanism of the differential staining reaction for adrenaline and noradrenaline storing granules in tissues fixed in glutaraldehyde.J. Anat. 100, 227–43.Google Scholar
  31. Curgy, J. J. (1968). Influence du mode de fixation sur la possibilité d'observer des structures myéliniques dans les hépatocytes d'embryons de poulet.J. Microscopie 7, 63–80.Google Scholar
  32. Daneel, S. &Weissenfels, N. (1965). Besseres Fixierungsverfahren zur Darstellung des Grundplasmas von Protozoen und Vertebraten zellen.Mikroskopie 20, 162–4.Google Scholar
  33. Deamer, D. W. &Crofts, A. (1967). Action of Triton X-100 on chloroplast membranes.J. Cell Biol. 33, 395–410.Google Scholar
  34. De Jong, D. W., Olson, A. C. &Jansen, E. F. (1967). Glutaraldehyde activation of nuclear acid phosphatase in cultured plant cells.Science 155, 1672–4.Google Scholar
  35. Descarries, L. &Droz, B. (1970). Intraneural distribution of exogenous norepinephine in the central nervous system of the rat.J. Cell Biol. 44, 385–99.Google Scholar
  36. di Modica, G. &Marzona, M. (1971). Cross linking of wool keratin by bifunctional aldehydes,Textile Res. J. 41, 701–5.Google Scholar
  37. Donnelly, E. H. &Goldstein, I. J. (1970). Glutaraldehyde insolubilized Concanavalin A: an adsorbent for the specific isolation of polysaccharides and glycoproteins.Biochem. J. 118, 679–80.Google Scholar
  38. Ellar, D. J., Munoz, E. &Salton, M. R. (1971). The effect of low concentrations of glutaraldehyde onMicrococcus lysodeikticus membranes: changes in the release of membrane associated enzymes and membrane structure.Biochem. biophys. Acta 225, 140–50.Google Scholar
  39. Ericsson, J. L. E. &Biberfeld, P. (1967). Studies on aldehyde fixation. Fixation rates and their relation to fine structure and some histochemical reactions in liver.Lab. Invest. 17, 281–98.Google Scholar
  40. Ernst, S. A. &Philpott, C. W. (1970). Preservation of Na-K-activated and Mg-activated ATP-ase activities of avian salt gland and teleost gill with formaldehyde as fixative.J. Histochem. Cytochem. 18, 251–63.Google Scholar
  41. Evans, A. P. (1969). Reactions of glutaraldehyde and succinaldehyde with compounds containing replaceable hydrogen atoms.Univ. Microfilms Inc. Ann Arbor Michigan 70-11, 634.Google Scholar
  42. Fahimi, H. D. &Drochmans (1965a). Essais de standardization de la fixation au glutaraldéhyde I. Purification et détermination de la concentration du glutaraldehyde.J. Microscopie 4, 725–36.Google Scholar
  43. Fahimi &Drochmans, P. (1965b). Essais de standardization de la fixation au glutaraldéhyde II. Influence des concentrations en aldéhyde et de l'osmolalité.J. Microscopie 4, 737–48.Google Scholar
  44. Fein, M. L. & Harris, E. H. (1962). Quantitative analytical procedure for determining glutaraldehyde and chrome in tanning solutions. U.S. Dept. Agriculture Publication ARS-73-37.Google Scholar
  45. Filachione, E. M., Korn, A. H. &Ard, J. S. (1967). The ultraviolet absorption of protein bound glutaraldehyde.J. Am. Leather Chemists Assoc. 67, 450–3.Google Scholar
  46. Flitney, E. W. (1966). The time course of fixation of albumin by formaldehyde, glutaraldehyde, acrolein and other higher aldehydes.J. R. microsc. Soc. 85, 353–64.Google Scholar
  47. Forssmann, W. G., Siegrist, G., Orci, L., Girardier, L., Pictet, R., Rouiller, C., Baumann, M. &Moritz, A. (1967). Fixation par perfusion pour la microscopie electronique: essai de generalisation.J. Microscopie 6, 279–304.Google Scholar
  48. Fortes, P. A. (1971). Glutaraldehyde as a probe of metabolism induced changes in mitochondrial proteins.Proc. Colloq. Johnson Res. Found.Google Scholar
  49. Franke, W. W., Krein, S. &Brown, R. M. (1969). Simultaneous glutaraldehyde-osmium tetroxide fixation with post osmication.Histochemie 19, 162–4.Google Scholar
  50. French, D. &Edsall, J. T. (1945). The reaction of formaldehyde with amino acids and proteins.Adv. prot. Chem. 2, 277–335.Google Scholar
  51. Frigerio, N. A. &Shaw, M. J. (1969). A simple method for determination of glutaraldehyde.J. Histochem. Cytochem. 17, 176–81.Google Scholar
  52. Garrett, J. R., Davies, K. J. &Parsons, P. A. (1972). Consumers' guide to glutaraldehyde.Proc. R. microsc. Soc. 7, 116–17.Google Scholar
  53. Gil, J. &Weibel, E. R. (1971). An improved apparatus for perfusion.J. Microsc. 94, 241–4.Google Scholar
  54. Grantham, J., Cuppage, F. E. &Fanestil (1971). Direct observation of toad bladder response to vasopressin.J. Cell Biol. 48, 695–9.Google Scholar
  55. Grillo, T. A. I., Ogunnaire, P. O. &Faoye, S. (1971). Effects of histological and electron microscopical fixatives on the insulin content of rat pancreas.J. Endocr. 51, 645–9.Google Scholar
  56. Haas, D. J. (1968). Preliminary studies on the denaturation of crosslinked lysozyme crystals.Biophysical J. 8, 549–55.Google Scholar
  57. Habeeb, A. F. S. A. &Hiramoto, R. (1968). Reaction of proteins with glutaraldehyde.Arch. Biochem. Biophys. 126, 16–26.Google Scholar
  58. Hanker, J. S., Kasler, F., Bloom, M. G., Copeland, J. S. &Seligman, A. M. (1967). Coordination of polymers of osmium: the nature of osmium black.Science 156, 1737–8.Google Scholar
  59. Hardin, J. H. &Spicer, S. S. (1970). Ultrastructure of neuronal nucleoli of rat trigeminal ganglia. Comparison of routine with pyroantimonate-osmium tetroxide fixation.J. Ultrastruct. Res. 31, 16–36.Google Scholar
  60. Hardy, P. M., Nicholls, A. C. & Rydon, H. N. (1969). Nature of glutaraldehyde in aqueous solution.Chem. Commun. 565–6.Google Scholar
  61. Harries, C. &Tank, L. (1908). Ueber die Aufspaltung der Cyclopentens zum Halbaldehyd der Glutarsaüre bezw. zum Glutardialdehyd.Berlin Ber D. Chem. Ges. 41, 1701–11.Google Scholar
  62. Hayat, M. A. (1970).Principles and Techniques of Electron Microscopy. Biological applications. London: Van Nostrand Reinhold Co.Google Scholar
  63. Hecker, H. (1970). Ultrastruktur der Symbioten in Ovozyten vonOrnithodorus moubata, Murray (Ixodoidea: Argasidae) nach simultaner Glutaraldehyd-Osmiumfixierung und Nach behandlung mit Uranylacetat (Triple Fixation).Experimentia 26, 874–7.Google Scholar
  64. Heller, J., Ostwald, T. J. &Bok, D. (1971). The osmotic behaviour of rod photoreceptor outer segment discs.J. Cell Biol. 48, 633–49.Google Scholar
  65. Hirsch, J. G. &Fedorko, M. E. (1968). Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and ‘post fixation’ in uranyl acetate.J. Cell Biol. 38, 615–27.Google Scholar
  66. Hodson, S. &Marshall, J. (1967). Tyrosine incorporation into the rabbit retina.J. Cell Biol. 35, 722–6.Google Scholar
  67. Hopwood, D. (1967a). Some aspects of fixation with glutaraldehyde. A biochemical and histochemical comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and glycogen with a note on penetration of glutaraldehyde into liver.J. Anat. 101, 83–92.Google Scholar
  68. Hopwood, D. (1967b). The behaviour of various glutaraldehydes on Sephadex G-10 and some implications for fixation.Histochemie 11, 289–95.Google Scholar
  69. Hopwood, D. (1967c). The effect of formaldehyde fixation and dehydration on ox adrenal medulla with respect to the chromaffin reaction and post-chroming.Histochemie 10, 98–106.Google Scholar
  70. Hopwood, D. (1968). The effect of pH and various fixatives on isolated ox chromaffin granules with respect to the chromaffin reaction.J. Anat. (Lond.)102, 415–24.Google Scholar
  71. Hopwood, D. (1969a). Fixatives and fixation: a review.Histochem. J. 1, 323–60.Google Scholar
  72. Hopwood, D. (1969b). A comparison of the crosslinking abilities of glutaraldehyde, formaldehyde and α-hydroxydipaldehyde with bovine serum albumin and casein.Histochemie 17, 151–61.Google Scholar
  73. Hopwood, D. (1969c). Fixation of proteins by osmium tetroxide, potassium dichromate and potassium permanganate.Histochemie 18, 250–60.Google Scholar
  74. Hopwood, D. (1970). The reactions between formaldehyde, glutaraldehyde and osmium tetroxide and their fixation effects on bovine serum albumin and on tissue blocks.Histochemie 24, 56–64.Google Scholar
  75. Hopwood, D. (1971a). The histochemistry and electron histochemistry of chromaffin tissue.Progr. Histochem. Cytochem. 3, 1–66.Google Scholar
  76. Hopwood, D. (1971b). Use of isoelectric focusing to determine the isoelectric point of bovine serum albumin after treatment with various common fixatives.Histochem. J. 3, 201–5.Google Scholar
  77. Hopwood, D. (1972a). Fixation with mercury compounds.Progr. Histochem. Cytochem. 4, 193–224.Google Scholar
  78. Hopwood, D., Allen, C. R. &Mccabe, M. (1970). The reactions between glutaraldehyde and various proteins. An investigation of their kinetics.Histochem. J. 2, 137–50.Google Scholar
  79. Horton, A. A. &Packer, L. (1969). Mitochondrial metabolism of aldehydes.Biochem. J. 116, 19–20.Google Scholar
  80. Horton, A. A. &Packer, L. (1969a). Mitochondrial metabolism of aldehydes.Biochem. J. 116, 19P-20P.Google Scholar
  81. Horton, A. A. &Packer, L. (1970). Interactions between malondialdehyde and rat liver mitochondria.J. Gerentol 25, 199–204.Google Scholar
  82. Hughes, R. C. &Thurman, P. F. (1970). Crosslinking of bacterial cell walls with glutaraldehyde.Biochem. J. 119, 925–6.Google Scholar
  83. Jahn, K. (1971). Über histochemische Aldehydreaktionen nach Fixation mit Glutaraldehyd.Acta Histochem. 39, 298–301.Google Scholar
  84. Janigan, D. T. (1964). Tissue enzyme fixation studies.Lab. Invest. 13, 1038–50.Google Scholar
  85. Janigan, D. T. (1965). The effect of aldehyde fixation on acid phosphatase activity in tissue blocks.J. Histochem. Cytochem. 13, 473–83.Google Scholar
  86. Jansen, E. F. &Olson, A. C. (1969). Properties and enzymatic activities of papain insolubilized with glutaraldehyde.Arch. Biochem. Biophys. 129, 221–7.Google Scholar
  87. Jansen, E. F., Tomimatsu, Y. &Olsen, A. C. (1971). Cross linking of α-chymotrypsin and other proteins by reaction with glutaraldehyde.Arch. Biochem. Biophys. 144, 394–400.Google Scholar
  88. Jansen, E. G., Curl, Al. &Balls, A. K. (1951). A crystalline, active oxidation product of α-chymotrypsin.J. Biol. Chem. 189, 671–82.Google Scholar
  89. Jard, S., Bourget, J., Carasso, N. &Favard, P. (1966). Action des fixatives sen la perméabilité et l'ultrastructure de la véssie de grenouille.J. Microscopie 5, 31–50.Google Scholar
  90. Jonsson, G. (1971). Quantitation of fluorescence of biogenic amines.Progr. Histochem. Cytochem. 2, 299–334.Google Scholar
  91. Kaldor, G. &Weinbach, S. (1965). Use of toluidine diisocyanide and glutaric dialdehyde in the conjugation of heavy meromyosin with light meromyosin.Arch. Biochem. Biophys. 112, 448–52.Google Scholar
  92. Kanamura, S. (1970). Difference in resistance to glutaraldehyde or formaldehyde fixation between mouse and rat hepatic glucose 6-phosphatase.Acta Histochem. Cytochem. 3, 160–2.Google Scholar
  93. Kanamura, S. (1971). Demonstration of glucose 6-phosphatase activity in hepatocytes following transparenchymal perfusion fixation with glutaraldehyde.J. Histochem. Cytochem. 19, 386–7, 520–1.Google Scholar
  94. Karnowsky, M. J. (1967). The ultrastructural basis of capillary permeability. Studies with peroxidase as a trace.J. Cell Biol. 36, 213.Google Scholar
  95. Kay, D. (1967).Techniques for Electron Microscopy. 2nd edn. Oxford: Blackwell.Google Scholar
  96. Landon, D. N. (1970). The influence of fixation upon the fine structure of the Z-disc of the rat striated muscle.J. Cell Sci. 6, 257–76.Google Scholar
  97. Lenard, J. &Singer, S. J. (1968). Alterations of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy.J. Cell Biol. 37, 117–21.Google Scholar
  98. Levy, W. A., Herzog, I., Suzuki, K., Katzman, R. &Scheinberg, L. (1965). Method for combined ultrastructural and biochemical analysis of normal tissue.J. Cell Biol. 27, 119–32.Google Scholar
  99. L'hermite, P. &Israel, M. (1969). Action du glutaraldéhyde sur les lipide et les protéines myéliniques.Ann. Histcchim. 14, 1–11.Google Scholar
  100. Lillie, R. D. (1967). Hot chromation oxyphilia.Histochemie 11, 332–49.Google Scholar
  101. Ljubešić, N. (1970). Osmiophile substanz in Blattzellen der Brombeere (Rubus fructicosus L.S.L.).Protoplasma 69, 49–59.Google Scholar
  102. Mantai, K. E. (1970). Some effects of hydrolytic enzymes on coupled and uncoupled electron flow in chloroplasts.Plant Physiol. 45, 563–6.Google Scholar
  103. Marzona, M. &Modica, G. (1969). Stabilization of wool by difunctional aldehydes.Ann. Chim. (Rome) 59, 956–62.Google Scholar
  104. Maunsbach, A. B. (1966). The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells.J. Ultrastruct. Res. 15, 283–309.Google Scholar
  105. Milch, R. A. (1963). Studies on collagen tissue aging: interaction of certain intermediary metabolites with collagen.Gercntologia 7, 129–52.Google Scholar
  106. Mollenhauer, H. H. &Totten, C. (1971). Studies on seeds I. Fixation of seeds.J. Cell Biol. 48, 387–94.Google Scholar
  107. Morel, F. M. M., Baker, R. F. &Wayland, H. (1971). Quantitation of human red blood cell fixation by glutaraldehyde.J. Cell Biol. 48, 91–100.Google Scholar
  108. Munton, T. J. &Russell, A. D. (1970). Aspects of the action of glutaraldehyde onEscherichia coli.J. appl. Bact. 33, 410–19.Google Scholar
  109. Ogata, K., Ottesen, M. &Svendsen, I. (1968). Preparation of water-insoluble, enzymically active derivatives of subtilisin type Novo by cross linking with glutaraldehyde.Biochem. biophys. Acta 159, 403–5.Google Scholar
  110. Ostrowski, K., Komender, J. &Kwarecki, K. (1961). Quantitative investigations of the solubility of proteins extracted from tissues fixed by different chemical and physical methods.Ann. Histochem. 6, 501–6.Google Scholar
  111. Ottesen, M. &Svenssen, B. (1971). Modification of papian by treatment with glutaraldehyde under reducing and non-reducing conditions.C.R. Lab. Carlsberg 38, 171–85.Google Scholar
  112. Packer, L., Allen, J. M. &Starks, M. (1968a). Light induced transport in glutaraldehyde fixed chloroplasts: studies with nigercin.Arch. Biochem. 128, 142–52.Google Scholar
  113. Packer, L. &Greville, G. D. (1969). Energy linked oxidation of glutaraldehyde by rat liver mitochondria.FEBS Lett. 3, 112–14.Google Scholar
  114. Packer, L., Wrigglesworth, J. M., Fortes, P. A. G. &Pressman, B. C. (1968b). Expansion of the inner membrane compartment and its relation to mitochondrial volume-ion transport.J. Cell Biol. 39, 382.Google Scholar
  115. Papadimitriou, J. M. &Van Duijn, P. (1970). Effects of fixation and substrate protection on the isoenzymes of aspartate aminotransferase studied in a quantitative cytochemical model system.J. Cell Biol. 47, 71–83.Google Scholar
  116. Park, R. B., Kelly, J., Drury, S. &Sauer, K. (1966). The Hill reaction of chloroplasts isolated from glutaraldehyde-fixed spinach leaves.Proc. Nat. Acad. Sci. U.S.A. 55, 1056–62.Google Scholar
  117. Pearse, A. G. E. (1968).Histochemistry: Theoretical and Applied, 3rd edn., vol. I. London: Churchill.Google Scholar
  118. Peters, T. &Ashley, C. A. (1967). An artefact in autoradiography due to binding of free amino acids to tissues by fixatives.J. Cell Biol. 33, 53–60.Google Scholar
  119. Quiocho, F. A. &Richards, F. M. (1964). Intermolecular crosslinking of a protein in the crystalline state: carboxypeptidase-A.Proc. Nat. Acad. Sci. U.S.A. 52, 833–8.Google Scholar
  120. Quiocho, F. A. &Richards, F. M. (1966). The enzymic behaviour of carboxypeptidase-A in the solid state.Biochem. 5, 4062–76.Google Scholar
  121. Rabinovitch, M. &Gary, P. P. (1968). Effect of the uptake of staphylococci on the ingestion of glutaraldehyde treated red cells attached to macrophages.Expt. Cell Res. 52, 363–9.Google Scholar
  122. Reale, E. &Luciano, L. (1970). Fixierung mit Aldehyden. Ihre Eignung für histologische und histochemische Untersuchungen in der Licht- und Elecktronen-mikroskopie.Histochemie 23, 144–70.Google Scholar
  123. Richards, F. M. &Knowles, J. R. (1968). Glutaraldehyde as a protein cross linking agent.J. Mol. Biol. 37, 231–3.Google Scholar
  124. Robertson, E. A. &Schultz, R. L. (1970). The impurities in glutaraldehyde and their effect on the fixation of the brain.J. Ultrastruct. Res. 30, 275–87.Google Scholar
  125. Roozemond, R. C. (1969). The effect of fixation with formaldehyde and glutaraldehyde on the composition of phospholipids extractable from rat hypthalamus.J. Histochem. Cytochem. 17, 482–6.Google Scholar
  126. Rost, F. W. D. &Ewen, S. W. B. (1971). New methods for the histochemical demonstration of catechol amines, tryptamines, histamine and other arylethylamines by acid- and aldehyde-induced fluorescence.Histochem. J. 3, 207–12.Google Scholar
  127. Roux, S. J. &Hillman, W. S. (1969). The effect of glutaraldehyde and two monoaldehydes on phytochrome.Arch. Biochem. Biophys. 131, 423–9.Google Scholar
  128. Rubbo, S. D., Gardner, J. F. &Webb, R. L. (1967). Biocidal activities of glutaraldehyde and related compounds.J. appl. Bact. 30, 78–87.Google Scholar
  129. Sabatini, D. D., Bensch, K. &Barnnett, R. J. (1963). Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation.J. Cell. Biol. 17, 19–58.Google Scholar
  130. Sachs, D. H. &Winn, H. J. (1970). The use of glutaraldehyde as a coupling agent for ribonuclease and bovine serum albumin.Immunochem. 7, 581–5.Google Scholar
  131. Schechter, I. (1971). Prolonged survival of glutaraldehyde treated skin homografts.Proc. Nat. Acad. Sci. U.S.A. 68, 1590–3.Google Scholar
  132. Schejter, A. &Bareli, A. (1970). Preparation and properties of cross linked water-insoluble catalase.Arch. Biochem. Biophys. 136, 325–30.Google Scholar
  133. Schultz, R. L. &Karlsson, U. (1965). Fixation of the central nervous system by aldehyde perfusion II. Effect of osmolarity pH of perfusata and fixative concentration.J. Ultrastruct. Res. 12, 187–206.Google Scholar
  134. Schwab, D. W., Janney, A. H., Scala, J. &Lewin, L. M. (1970). Preservation of fine structures in yeast by fixation in a dimethyl sulfoxide-acrolein-glutaraldehyde solution.Stain Technol. 45, 143–7.Google Scholar
  135. Seki, M. (1936). Zur physikalischen Chemie der Histologischen Färbung IX. Über den Einfluss der Fixierung auf die Färbarkheit der histologische Element.Z. Zellforsch 18, 21–55.Google Scholar
  136. Shea, S. M. (1971). Lanthanum staining of the surface coat of cells.J. Cell Biol. 51, 611–20.Google Scholar
  137. Shnitka, T. K. &Seligman, A. M. (1971). Ultrastructural localization of enzymes.Ann. Rev. Biochem. 40, 375–96.Google Scholar
  138. Sipes, J. (1970). El uso del glutaraldehido en escala industrial.Rev. Assoc. Argent. Quim. Tech. Indust. Cuer. II, 148–55.Google Scholar
  139. Sjöstrand, F. S. &Barajas, L. (1968). Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes.J. Ultrastruct. Res. 25, 121–55.Google Scholar
  140. Thiessen, G., Thiessen, H., Dowidat, H. J., Luciano, L. &Reale, E. (1970). Die Diffusion der99Fe-markierten Hämoglobins, ein Artefakt der Glutaraldehyde-Fixierung.Histochemie 23, 171–5.Google Scholar
  141. Tomimatsu, Y., Jansen, E. F., Gaffield, W. &Olsen, A. C. (1971). Physical chemical observations on the α-chymotripsin-glutaraldehyde system during formation of an insoluble derivation.J. Colloid Interface Science 36, 51–64.Google Scholar
  142. Tooze, J. (1964). Measurements of some cellular changes during the fixation of amphibian erythrocytes w with osmium tetroxide solutions.J. Cell Biol. 22, 551–63.Google Scholar
  143. Trelstad, R. L. (1969). Effect of pH on the stability of purified glutaraldehyde.J. Histochem. Cytochem. 17, 756–7.Google Scholar
  144. Trump, B. F. &Bulger, R. E. (1966). New ultrastructural characteristics of cells fixed in a glutaraldehyde-osmium tetroxide mixture.Lab. Invest. 15, 368–79.Google Scholar
  145. Trump, B. F. &Ericsson, J. L. E. (1965). The effect of the fixative solution on the ultrastructure of cells and tissues. A comparative analysis with particular attention to the proximal convoluted tubule of the rat kidney.Lab. Invest. 14, 1245–325.Google Scholar
  146. Vanha-Perttula, T. &Grimley, P. M. (1970). Loss of proteins and other macromolecules during preparation of cell cultures for high resolution autoradiography.J. Histochem. Cytochem. 18, 565–75.Google Scholar
  147. Van Harreveld, A. &Steiner, J. (1970). Extracellular space in frozen and ethanol substituted central nervous system.Anat. Rec. 166, 117–30.Google Scholar
  148. van Harreveld, A. &Khattab, F. I. (1968). Perfusion fixation with glutaraldehyde and post fixation with osmium tetroxide for electron microscopy.J. Cell Sci. 3, 579–84.Google Scholar
  149. Walsh, K. A., Houston, L. L. &Kenner, R. A. (1970).Chemical Modification of Bovine Trypsinogen and Trypsin in Structure Function Relationships of Proteolytic Enzymes (eds. P. Desnuelle, H. Neurath & M. Ottesen). Copenhagen: Munksgaard.Google Scholar
  150. Wang, J. H. C. &Tu, J. I. (1969). Modification of glycogen phosphorylase by glutaraldehyde.Biochem. 8, 4403–10.Google Scholar
  151. Webster, H. De F. &Ames, A. (1969). Glutaraldehyde fixation of central nervous tissue: an electron microscopic evaluation in the isolated rabbit retina.Tissue Cell 1, 53–62.Google Scholar
  152. Webster, H. De F. &Ames, A. &Nesbett, F. B. (1969). A quantitative morphological study of osmotically induced swelling and shrinkage in nervous tissue.Tissue Cell 1, 201–6.Google Scholar
  153. West, J. &Mangan, J. L. (1970). Effects of glutaraldehyde on the protein loss and photochemical properties of kale chloroplasts: preliminary studies on food conversion.Nature (Lond.) 228, 466–8.Google Scholar
  154. Wrigglesworth, J. M., Packer, L. &Branton, D. (1970). Organization of mitochondrial structure as revealed by freeze etching.Biochem. Biophys. Acta 205, 125–35.Google Scholar
  155. Yokota, K., Suzuki, Y. & Ishii, Y. (1965). Temperature dependence of the polymerization modes of glutaraldehyde. In:Chem. Abstr. 65, 13835.Google Scholar
  156. Young, E. G. (1963).Comprehensive Biochemistry. Vol. 7, p. 25. New York: Elsevier.Google Scholar

Copyright information

© Chapman and Hall Ltd 1972

Authors and Affiliations

  • David Hopwood
    • 1
  1. 1.Department of PathologyUniversity of NottinghamNottinghamUK

Personalised recommendations