Skip to main content
Log in

Species relationships and genetic variation in the diploid wheats (Triticum, Aegilops) as revealed by starch gel electrophoresis

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Twenty enzyme loci were examined in the diploid species ofTriticum andAegilops for allelic variation by starch gel electrophoresis. SectionSitopsis, including the five species,Ae. speltoides, Ae. lingissima, Ae. sharonensis, Ae. bicornis andAe. searsii form a close subgroup withAe. speltoides slightly removed from the others.T. monococcum s. lat., was found to be closest to the species of theSitopsis group.Ae. comosa, Ae. umbellulata andAe. uniaristata form a second subgroup withAe. caudata most closely related to these species.Ae. squarrosa appears almost equally related to all of the species, showing no special affinity for any one species group. Nineteen out of twenty loci examined were polymorphic with a mean of 6.7 alleles per locus. Species could be, for most loci, characterized by the presence of predominant alleles. A conspicious genetic characteristic ofTriticum-Aegilops is the sharing of these predominant alleles between species. Within species variation is characterized by a diffuse distribution of secondary alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brewer, G. J., Sing, C. F., Sears, E. R., 1969: Studies of isozyme patterns in nullisomic-tetrasomic combinations of hexaploid wheat. — Proc. Natl. Acad. Sci. U.S.A.64, 1224–1229.

    Google Scholar 

  • Eig, A., 1929: Monographisch-kritische Übersicht der GattungAegilops. — Feddes Repert. Spec. Nov.1, 1–228.

    Google Scholar 

  • Feldman, M., Kislev, M., 1977:Aegilops searsii, a new species of sectionSitopsis (Platystachys). — Isr. J. Bot.26, 190–201.

    Google Scholar 

  • Hart, G. E., Langston, P. J., 1977: Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. — Heredity39, 263–277.

    Google Scholar 

  • Johnson, B. L., 1972: Seed protein profiles and the origin of the hexaploid wheats. — Proc. Natl. Acad. Sci.69, 1398–1402.

    Google Scholar 

  • Johnson, B. L., Dhalinal, H. S., 1976: Reproductive isolation ofTriticum boeticum andT. urartu and the origin of tetraploid wheats. — Am. J. Bot.63, 1088–1094.

    Google Scholar 

  • Kasarda, D. D., Barnardin, J. E., Qualset, C. D., 1976: Relationship of Gliadin protein components to chromosomes in hexaploid wheats (Triticum aesticum L.). — Proc. Natl. Acad. Sci.73, 3646–3650.

    Google Scholar 

  • Kihara, H., 1947: Definierung und Klassifikation derAegilops-Arten auf Grund der Genomanalyse. — Seiken Ziho3, 11–23.

    Google Scholar 

  • —, 1954: Considerations on the evolution and distribution ofAegilops species based on the analyzer-method. — Cytologia (Tokyo)19, 336–357.

    Google Scholar 

  • Kornfield, I., 1974: Evolutionary genetics of endemic cichlid fishes (Pisces: Cichlidae) in Lake Malawi, Africa. — Doctoral Thesis, State University of New York at Stony Brook.

  • Lakovaara, S., Saura, A., Lankinen, P., Zokki, J., 1976: The use of isozymes in tracing evolution and in classifyingDrosophilidae. — Zool. Scripta5, 173–179.

    Google Scholar 

  • Marshall, D. R., Allard, R. W., 1970: Maintenance of isozyme polymorphisms in natural populations ofAvena barbata. — Genetics66, 393–399.

    Google Scholar 

  • Morris, R., Sears, E. R., 1967: The cytogenetics of wheat and it's relatives. — In Wheat and Wheat Improvement (Eds.Quisenbury,0.,Reitz, L. P.). — Amer. Soc. Agron. Monograph13.

  • Nakai, Y., Tsunewaki, K., 1971: Isozyme variations inAegilops andTriticum. I. Esterase isozymes inAegilops studied using gel isoelectrofocusing method. — Jap. J. Genetics46, 321–336.

    Google Scholar 

  • Nevo, A., Kim, J., Shaw, C., Thaeler, C., 1974: Genetic variation, selection and adaptation inThomomys talpoides Gophers. — Evolution28, 1–23.

    Google Scholar 

  • Riley, R., 1965: Cytogenetics and the evolution of wheat. In Essays on Crop Plant Evolution (Ed. Hutchinson, J. R.), 103–118. — Cambridge: Univ. Press.

    Google Scholar 

  • Schiemann, E., 1948: Weizen, Roggen, Gerste: Systematik, Geschichte und Verwendung. — Jena.

  • Symeonidis, L., Karataglis, S., Tsekos, I., 1979: Electrophoretic variation in esterases and peroxidases of native Greek diploidAegilops species (Ae. caudata andAe. comosa, Poaceae). — Pl. Syst. Evol.131, 1–15.

    Google Scholar 

  • Waines, J. G., 1969: Electrophoretic-systematic studies inAegilops. — Doctoral Thesis: University of California, Riverside.

    Google Scholar 

  • Zohary, D., 1965: Colonizer species in the wheat group. — In The Genetics of Colonizing Species (Eds.Baker, H. G., Stebbins, G. L.), 403–419. — New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brody, T., Mendlinger, S. Species relationships and genetic variation in the diploid wheats (Triticum, Aegilops) as revealed by starch gel electrophoresis. Pl Syst Evol 136, 247–258 (1980). https://doi.org/10.1007/BF01004629

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004629

Key words

Navigation