Theoretical and Experimental Chemistry

, Volume 21, Issue 4, pp 428–436 | Cite as

Pairwise interaction method in crystal field theory

  • R. B. Dushin
  • L. D. Shcherba
Article

Abstract

We describe a new variant of crystal field theory — the pairwise interaction method. The pairwise interaction method is a superposition variant of crystal field theory in which as the parameters we use the shifts in the one-electron orbital energy levels of the innerZ-electron under the action of the perturbation caused by a single ligand. We establish a relationship between the pairwise interaction method parameters and parameters of the angular overlap model and classifical crystal field theory. We present tables allowing us to consider (in the weak crystal field approximation) the complexes ML6, ML8(Oh), and ML4(Td) with integral and half-integral values of J for the central atom (≤6), and also the octahedral complex in the case of an intermediate crystal field for integral J≤6.

Keywords

Energy Level Crystal Field Method Parameter Central Atom Orbital Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. B. Bersuker, Electronic Structure and Properties of Coordination Compounds [in Russian], Khimiya, Leningrad (1976).Google Scholar
  2. 2.
    D. J. Newman, “Theory of lanthanide crystal field,” Adv. Phys.,20, No, 84, 187–256 (1971).Google Scholar
  3. 3.
    K. D. Warren, “An angular overlap treatment of σ and π bonding in f-orbital compounds,” Inorg. Chem.,16, No. 8, 2008–2011 (1977).Google Scholar
  4. 4.
    A. A. Belyaeva, R. B. Dushin, Yu. B. Predtechenskii, and L. D. Shcherba, “Luminescence centers in crystalline noble gases with lithium atom impurities,” Dokl. Akad. Nauk SSSR,199, No. 3, 628–631 (1971).Google Scholar
  5. 5.
    R. B. Dushin and L. D. Shcherba, “Vibronic coupling parameters in the static Jahn-Teller effect,” in: Eleventh European Conference on Molecular Spectroscopy: Abstracts Tallin, May 28–June 1, 1973 [in Russian], Tallin (1973), p. 58.Google Scholar
  6. 6.
    Yu. A. Barbanel', R. B. Dushin, N. K. Mikhailova, and G. P. Chudnovskaya, “Electronic structure of octahedral complexes of f elements in Cs2NaAmCl6 and Cs2NaLnCl6 crystals,” Radiokhimiya,21, No. 5, 706–713 (1979).Google Scholar
  7. 7.
    Yu. A. Barbanel', R. B. Dushin, V. V. Kolin, et al., “f-Covalency of actinides in cubic crystals of Cs2NaAmCL6,” in: Proceedings, Second International Conference on Electronic Structure of Actinides: Warsaw, September 15–18, 1976; Warsaw (1976), pp. 179–183.Google Scholar
  8. 8.
    R. G. Denning, J. O. W. Norris, and D. Brown, “The electronic structure of actinyl ions. 5. f-f Transitions in [NpO2Cl4]2− and [NpO2(NO3)3],” Mol. Phys.,46, No. 2, 287–323 (1982).Google Scholar
  9. 9.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum [in Russian], Nauka, Leningrad (1975).Google Scholar
  10. 10.
    A. M. Leushin, Tables of Functions Transforming According to the Irreducible Representations of the Crystallographic Point Groups [in Russian], Nauka, Moscow (1975).Google Scholar
  11. 11.
    M. Kibler, “How to obtain the contribution of AOM from a particular crystal field potential,” J. Chem. Phys.,61, No. 9, 3859–3866 (1974).Google Scholar
  12. 12.
    C. K. Jorgensen, R. Pappalardo, and H. H. Schmidtke, “Do the ‘ligand field,’ parameters in lanthanides represent weak covalent bonding?,”, J. Chem. Phys.,39, No. 6, 1422–1430 (1963).Google Scholar
  13. 13.
    M. Bacci, “JT coupling constants in the framework of the AOM,” Chem. Phys. Lett.,58, No. 4, 537–541 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • R. B. Dushin
    • 1
  • L. D. Shcherba
    • 1
  1. 1.Leningrad

Personalised recommendations