Journal of Solution Chemistry

, Volume 24, Issue 5, pp 511–522 | Cite as

Molar enthalpies of transfer of divalent transition metal lons and their chloro complexes from N,N-dimethylformamide to N,N-dimethylacetamide

  • Makoto Koidel
  • Shin-ichi Ishiguro
Article

Abstract

The molar enthalpies of transfer ΔtH° of some divalent metal ions (M-Mn, Co, Ni and Zn) and their chloro complexes from N,N-dimethyl-for-mamide (DMF) to N,N-dimethylacetamide (DMA) have been determined using the tetraphenylarsonium-tetraphenylborate (TATB) assumption at 25°C. Although physicochemical properties of DMF and DMA as solvent are similar, the ΔtH°(M2+) value increased significantly in the order Mn<Co<Ni<Zn. The corresponding ΔtH° values for the mono-and dichloro complexes showed also a strong metal dependence, while those for the triand tetrachloro complexes practically do not. These results can be reasonably explained in terms of steric hindrance upon solvation of the metal ions and complexes in DMA.

Key Words

Enthalpy of transfer chloro complexes dimethylformamide dimethylacetamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Riddick, W. B. Bunger, and T. K. Sakano,Organic Solvents 4th ed. (Wiley-Interscience, New York, 1986).Google Scholar
  2. 2.
    V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New York and London, 1978).Google Scholar
  3. 3.
    H. Suzuki and S. Ishiguro,Inorg. Chem. 31, 4178 (1992).Google Scholar
  4. 4.
    H. Suzuki, M. Koide, and S. Ishiguro,J. Chem. Soc. Faraday Trans. 89, 3055 (1993).Google Scholar
  5. 5.
    H. Suzuki, M. Koide, and S. Ishiguro,Bull. Chem. Soc. Jpn. 67, 1320 (1994).Google Scholar
  6. 6.
    S. Ishiguro, K. Ozutsumi, and H. Ohtaki,J. Chem. Soc. Faraday Trans. 1 84, 2409 (1988).Google Scholar
  7. 7.
    S. Ishiguro, K. Ozutsumi, and H. Ohtaki,Bull. Chem. Soc. Jpn. 60, 531 (1987).Google Scholar
  8. 8.
    B. G. Cox, G. R. Hedwig, A. J. Parker, and D. W. Watts,Aust. J. Chem. 27, 477 (1974).Google Scholar
  9. 9.
    G. R. Hedwig and A. J. Parker,J. Amer. Chem. Soc. 96, 6589 (1974).Google Scholar
  10. 10.
    Y. Marcus, M. J. Kamlet, and R. W. Taft,J. Phys. Chem. 92, 3613 (1988).Google Scholar
  11. 11.
    G. Gritzner,Pure Appl. Chem. 60, 1743 (1988).Google Scholar
  12. 12.
    G. Gritzner,J. Chem. Soc. Faraday Trans. 1 84, 1047 (1988).Google Scholar
  13. 13.
    G. Gritzner,Pure & Appl. Chem. 62, 1839 (1990).Google Scholar
  14. 14.
    H. Piekarski and D. Waliszewski,Thermochim. Acta 190, 299 (1991).Google Scholar
  15. 15.
    E. Kamienska-Piotrowicz,Thermochim Acta 143, 161 (1989).Google Scholar
  16. 16.
    H. D. Inerowicz, W. Li, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2223 (1994).Google Scholar
  17. 17.
    M. Chaundhry, K. C. Dash, E. Kamienska-Piotrowicz, Y. Kinjo, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2235 (1994).Google Scholar
  18. 18.
    M. Chaundhry and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2243 (1994).Google Scholar
  19. 19.
    M. Chaundhry, Y. Kinjo, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2683 (1994).Google Scholar
  20. 20.
    S. Ishiguro, B. g. Jeliazkova, and H. Ohtaki,Bull. Chem. Soc. Jpn. 58, 1749 (1985).Google Scholar
  21. 21.
    S. Ishiguro and H. Ohtaki,Bull. Chem. Soc. Jpn. 57, 2622 (1984).Google Scholar
  22. 22.
    B. G. Cox and A. J. Parker,J. Amer. Chem. Soc. 95, 402 (1973).Google Scholar
  23. 23.
    D. D. Perrin and W. L. F. Armarego,Purification of Laboratory Chemicals, 3rd ed. (Pergamon Press, New York, 1988).Google Scholar
  24. 24.
    N. I. Gill and R. S. Nyholm,J. Chem. Soc. 3997, (1959).Google Scholar
  25. 25.
    D. Michael, P. Mingos, and A. L. Rohl,Inorg. Chem. 30, 3769 (1991).Google Scholar
  26. 26.
    Y. Kondo, H. Shiotani, and S. Kusabayashi,J. Chem. Soc., Faraday Trans. 1 80, 2145 (1984).Google Scholar
  27. 27.
    C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 75, 3606 (1971).Google Scholar
  28. 28.
    R. Fuchs, J. L. Bear, and R. F. Rodewald,J. Amer. Chem. Soc. 91, 5797 (1969).Google Scholar
  29. 29.
    G. Choux and R. L. Benoit,J. Amer. Chem. Soc. 91, 6221 (1969).Google Scholar
  30. 30.
    C. de Visser and G. Somsen,J. Phys. Chem. 78, 1719 (1974).Google Scholar
  31. 31.
    M. Mecik and A. Chudziak,J. Solution Chem. 14, 653 (1985).Google Scholar
  32. 32.
    K. Ozutsumi, M. Koide, H. Suzuki, and S. Ishiguro,J. Phys. Chem. 97, 500 (1993).Google Scholar
  33. 33.
    P. Lemoine and P. Herpin,Acta Crystallogr., Sect. B 1974,30, 1289 (1974).Google Scholar
  34. 34.
    G. V. Tsintsadze, M. A. Porai-Koshits and A. S. Antsyshkina,Zh. Strukt. Khim. 8, 296 (1967) Engl. transl.,J. Struct. Chem. 8, 253 (1967).Google Scholar
  35. 35.
    R. D. Shannon,Acta Crystallogr. A32, 751 (1976).Google Scholar
  36. 36.
    R. S. Drago, D. W. Meek, M. D. Joesten and L. LaRoche,Inorg. Chem. 2, 124 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Makoto Koidel
    • 1
  • Shin-ichi Ishiguro
    • 2
  1. 1.Department of Electronic ChemistryTokyo Institute of Technology at NagatsutaYokohama 227Japan
  2. 2.Department of Chemistry, Faculty of ScienceKyushu UniversityFukuoka 812Japan

Personalised recommendations