Skip to main content
Log in

Molar enthalpies of transfer of divalent transition metal lons and their chloro complexes from N,N-dimethylformamide to N,N-dimethylacetamide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The molar enthalpies of transfer Δt H ° of some divalent metal ions (M-Mn, Co, Ni and Zn) and their chloro complexes from N,N-dimethyl-for-mamide (DMF) to N,N-dimethylacetamide (DMA) have been determined using the tetraphenylarsonium-tetraphenylborate (TATB) assumption at 25°C. Although physicochemical properties of DMF and DMA as solvent are similar, the Δt H °(M 2+) value increased significantly in the order Mn<Co<Ni<Zn. The corresponding Δt H ° values for the mono-and dichloro complexes showed also a strong metal dependence, while those for the triand tetrachloro complexes practically do not. These results can be reasonably explained in terms of steric hindrance upon solvation of the metal ions and complexes in DMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. Riddick, W. B. Bunger, and T. K. Sakano,Organic Solvents 4th ed. (Wiley-Interscience, New York, 1986).

    Google Scholar 

  2. V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New York and London, 1978).

    Google Scholar 

  3. H. Suzuki and S. Ishiguro,Inorg. Chem. 31, 4178 (1992).

    Google Scholar 

  4. H. Suzuki, M. Koide, and S. Ishiguro,J. Chem. Soc. Faraday Trans. 89, 3055 (1993).

    Google Scholar 

  5. H. Suzuki, M. Koide, and S. Ishiguro,Bull. Chem. Soc. Jpn. 67, 1320 (1994).

    Google Scholar 

  6. S. Ishiguro, K. Ozutsumi, and H. Ohtaki,J. Chem. Soc. Faraday Trans. 1 84, 2409 (1988).

    Google Scholar 

  7. S. Ishiguro, K. Ozutsumi, and H. Ohtaki,Bull. Chem. Soc. Jpn. 60, 531 (1987).

    Google Scholar 

  8. B. G. Cox, G. R. Hedwig, A. J. Parker, and D. W. Watts,Aust. J. Chem. 27, 477 (1974).

    Google Scholar 

  9. G. R. Hedwig and A. J. Parker,J. Amer. Chem. Soc. 96, 6589 (1974).

    Google Scholar 

  10. Y. Marcus, M. J. Kamlet, and R. W. Taft,J. Phys. Chem. 92, 3613 (1988).

    Google Scholar 

  11. G. Gritzner,Pure Appl. Chem. 60, 1743 (1988).

    Google Scholar 

  12. G. Gritzner,J. Chem. Soc. Faraday Trans. 1 84, 1047 (1988).

    Google Scholar 

  13. G. Gritzner,Pure & Appl. Chem. 62, 1839 (1990).

    Google Scholar 

  14. H. Piekarski and D. Waliszewski,Thermochim. Acta 190, 299 (1991).

    Google Scholar 

  15. E. Kamienska-Piotrowicz,Thermochim Acta 143, 161 (1989).

    Google Scholar 

  16. H. D. Inerowicz, W. Li, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2223 (1994).

    Google Scholar 

  17. M. Chaundhry, K. C. Dash, E. Kamienska-Piotrowicz, Y. Kinjo, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2235 (1994).

    Google Scholar 

  18. M. Chaundhry and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2243 (1994).

    Google Scholar 

  19. M. Chaundhry, Y. Kinjo, and I. Persson,J. Chem. Soc., Faraday Trans. 90, 2683 (1994).

    Google Scholar 

  20. S. Ishiguro, B. g. Jeliazkova, and H. Ohtaki,Bull. Chem. Soc. Jpn. 58, 1749 (1985).

    Google Scholar 

  21. S. Ishiguro and H. Ohtaki,Bull. Chem. Soc. Jpn. 57, 2622 (1984).

    Google Scholar 

  22. B. G. Cox and A. J. Parker,J. Amer. Chem. Soc. 95, 402 (1973).

    Google Scholar 

  23. D. D. Perrin and W. L. F. Armarego,Purification of Laboratory Chemicals, 3rd ed. (Pergamon Press, New York, 1988).

    Google Scholar 

  24. N. I. Gill and R. S. Nyholm,J. Chem. Soc. 3997, (1959).

  25. D. Michael, P. Mingos, and A. L. Rohl,Inorg. Chem. 30, 3769 (1991).

    Google Scholar 

  26. Y. Kondo, H. Shiotani, and S. Kusabayashi,J. Chem. Soc., Faraday Trans. 1 80, 2145 (1984).

    Google Scholar 

  27. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 75, 3606 (1971).

    Google Scholar 

  28. R. Fuchs, J. L. Bear, and R. F. Rodewald,J. Amer. Chem. Soc. 91, 5797 (1969).

    Google Scholar 

  29. G. Choux and R. L. Benoit,J. Amer. Chem. Soc. 91, 6221 (1969).

    Google Scholar 

  30. C. de Visser and G. Somsen,J. Phys. Chem. 78, 1719 (1974).

    Google Scholar 

  31. M. Mecik and A. Chudziak,J. Solution Chem. 14, 653 (1985).

    Google Scholar 

  32. K. Ozutsumi, M. Koide, H. Suzuki, and S. Ishiguro,J. Phys. Chem. 97, 500 (1993).

    Google Scholar 

  33. P. Lemoine and P. Herpin,Acta Crystallogr., Sect. B 1974,30, 1289 (1974).

    Google Scholar 

  34. G. V. Tsintsadze, M. A. Porai-Koshits and A. S. Antsyshkina,Zh. Strukt. Khim. 8, 296 (1967) Engl. transl.,J. Struct. Chem. 8, 253 (1967).

    Google Scholar 

  35. R. D. Shannon,Acta Crystallogr. A32, 751 (1976).

    Google Scholar 

  36. R. S. Drago, D. W. Meek, M. D. Joesten and L. LaRoche,Inorg. Chem. 2, 124 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koidel, M., Ishiguro, Si. Molar enthalpies of transfer of divalent transition metal lons and their chloro complexes from N,N-dimethylformamide to N,N-dimethylacetamide. J Solution Chem 24, 511–522 (1995). https://doi.org/10.1007/BF01004481

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004481

Key Words

Navigation