Skip to main content
Log in

Investigation of radical ions with time-resolved surface enhanced Raman spectroscopy

  • Part III: Trends In Modern Techniques
  • Published:
Molecular Engineering

Abstract

Time-resolved surface enhanced Raman scattering (TRSERS) spectroscopic methods are discussed for the study of radical ions produced photochemically and electrochemically at silver or gold metal surfaces. Both single shot and pump-probe TRSERS experimental methods are illustrated which use an optical multichannel analyzer, OMA, for ms (single shot) to ns (pump-probe) time resolution. Fundamental chemical and physical processes for photochemically and electrochemically induced radical ion formation are described for adsorbed molecules at the metal-solution interface. Emphasis is given to the possibility of laser photoinduced radical ion formation by a direct molecule-to-metal charge transfer process. Applications of TRSERS techniques are discussed for the study of radical ions formed by various photochemical and electrochemical reactions at the surface of SERS active metals. These adsorbed reaction systems encompass electroreduction processes of adsorbed alkylviologens, p-nitrobenzoate, 4-cyanopyridine, 4-pyridine carboxaldehyde, 4-hydroxymethylpyridine, and direct photoinduced radical cation formation from flavin mononucleotide, FMN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Shi, W. Zhang, R. L. and J. R. Lombardi:J. Phys. Chem. 96, 10093 (1992).

    Google Scholar 

  2. J. R. Birk and S. P. Perone:Anal. Chem. 40, 466 (1986).

    Google Scholar 

  3. A. Henglein: Pulse Radiolysis and Polarography: Electrode Reactions of Short-lived Free Radicals, in A. J. Bard (ed.),Electroanalytical Chemistry, Vol. 9, Marcel Dekker, Inc., New York (1976), pp. 163–244.

    Google Scholar 

  4. G. C. Pimental (ed.):Opportunities in Chemistry, National Academy Press, Washington, S. 86 ff. (1985).

    Google Scholar 

  5. R. R. Cavanagh, D. S. King, J. C. Stephenson, and T. F. Heinz:J. Phys. Chem. 97, 786 (1993).

    Google Scholar 

  6. T. E. Furtak: ‘Optical and Electronic Resonances: “The Underlying Sources of Surface Enhanced Raman Spectroscopy”’ in B. Garetz and J. R. Lombardi (eds.),Advances in Laser Spectroscopy, Vol. 2, John Wiley and Son, Chichester (1984), pp. 175–205.

    Google Scholar 

  7. R. K. Chang and B. L. Laube: ‘Surface-Enhanced Raman Scattering and Nonlinear Optics Applied to Electrochemistry’, inCRC Critical Reviews in Solid State and Material Science, Vol. 12, pp. 1–73, CRC Press, Inc., Boca Raton (1984).

    Google Scholar 

  8. R. L. Birke and J. R. Lombardi: ‘Surface-Enhanced Raman Scatterings’, in R. J. Gale (ed.),Spectroelectrochemistry: Theory and Practice, Plenum Press, New York (1988), pp. 263–348.

    Google Scholar 

  9. E. J. Zeman and G. C. Schatz:J. Phys. Chem. 91, 634 (1987).

    Google Scholar 

  10. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu:J. Chem. Phys. 84, 4174 (1986).

    Google Scholar 

  11. J. R. Lombardi, R. L. Birke, L. A. Sanchez, I. Bernard, and S. C. Sun:Chem. Phys. Lett. 104, 240 (1984).

    Google Scholar 

  12. R. P. Van Duyne: ‘Laser Excitation of Raman Scattering from Adsorbed Molecules on Electrodes Surfaces’, in C. B. Moore (ed.),Chemical and Biochemical Applications of Lasers, Vol. IV, Academic Press Inc., New York (1979), pp. 101–185.

    Google Scholar 

  13. R. L. Birke, T.-H. Lu, and J. R. Lombardi: ‘Surface-Enhanced Raman Spectroscopy’, in R. Varmi and J. R. Selman (eds.),Techniques for the Characterization of Electrodes and Electrochemical Processes, John Wiley and Son, Inc., New York (1991), pp. 211–277.

    Google Scholar 

  14. A. Vivoni, J. R. Lombardi, and R. L. Birke: unpublished results (1993).

  15. J. Billman and A. Otto:Solid State Commun. 44, 105 (1982).

    Google Scholar 

  16. T. E. Furtak and S. H. Macomber:Chem. Phys. Lett. 95, 328 (1983).

    Google Scholar 

  17. Ph. Avouris and B. N. J. Persson:J. Phys. Chem. 88, 837 (1984).

    Google Scholar 

  18. J. Bokor:Science 246, 1130 (1989).

    Google Scholar 

  19. E. P. March, F. L. Tabares, M. R. Schneider, and J. P. Cowin:J. Vac. Sci. Technol. A5, 519 (1987).

    Google Scholar 

  20. E. P. Marsh, M. R. Schneider, T. L. Gilton, F. L. Tabares, W. Meier, and J. P. Cowin:Phys. Rev. Lett. 60, 2551 (1988).

    Google Scholar 

  21. E. P. Marsh, T. L. Gilton, W. Meier, M. R. Schneider, and J. P. Cowin:Phys. Rev. Lett. 61, 2725 (1988).

    Google Scholar 

  22. S. A. Costello, B. Roop, Z.-M. Liu, and J. M. White:J. Phys. Chem. 92, 1019 (1988).

    Google Scholar 

  23. Z. M. Liu, S. A. Costello, B. Roop, S. R. Coon, S. Akhter, and J. M. White:J. Phys. Chem. 93, 7681 (1989).

    Google Scholar 

  24. C. C. Cho, B. A. Collings, R. E. Hammer, J. C. Polanyi, C. D. Stanners, J. H. Wang, and G.-P. Xu:J. Phys. Chem. 93, 7761 (1989).

    Google Scholar 

  25. B. Roop, S. A. Costello, C. M. Greenlief, and J. M. White:Chem. Phys. Lett. 143, 38 (1988).

    Google Scholar 

  26. X. L. Zhou and J. M. White:J. Phys. Chem. 94, 2643 (1990).

    Google Scholar 

  27. G. M. Goncher and C. A. Harris:J. Chem. Phys. 77, 3767 (1982).

    Google Scholar 

  28. G. M. Goncher, C. A. Parsons, and C. A. Harris:J. Phys. Chem. 88, 4200 (1984).

    Google Scholar 

  29. A. Nitzan and L. E. Brus:J. Chem. Phys. 74, 5321 (1981).

    Google Scholar 

  30. A. Nitzan and L. E. Brus:J. Chem. Phys. 75, 2205 (1981).

    Google Scholar 

  31. K. H. Drexhage, H. Kuhn, and F. P. Schafer:Ber. Bunsenges. Phys. Chem. 22, 329 (1968).

    Google Scholar 

  32. R. R. Chance, A. Prock, and R. Silbey:J. Chem. Phys. 60, 2744 (1974).

    Google Scholar 

  33. R. R. Chance, A. Prock, and R. Silbey:Adv. Chem. Phys. 37, 1 (1978).

    Google Scholar 

  34. B. J. N. Persson:J. Phys. C 11, 4251 (1978).

    Google Scholar 

  35. B. J. N. Persson and N. D. Lang:Phys. Rev. B 26, 5409 (1982).

    Google Scholar 

  36. H. Metiu and J. W. Gadzuk:J. Chem. Phys. 74, 2641 (1981).

    Google Scholar 

  37. H. Morawitz and M. R. Philpot:Phys Rev. B 10, 4863 (1974).

    Google Scholar 

  38. R. Rupin:J. Chem. Phys. 76, 1681 (1982).

    Google Scholar 

  39. J. Gersten and A. Nitzan:J. Chem. Phys. 74, 1139 (1981).

    Google Scholar 

  40. Ph. Avouris and B. N. J. Persson:J. Chem. Phys. 79, 5156 (1983).

    Google Scholar 

  41. S. Sun, R. L. Birke, J. R. Lombardi, K. P. Leung, and A. Z. Genack:J. Phys. Chem. 92, 5965 (1988).

    Google Scholar 

  42. P. Avouris and R. E. Walkup: ‘Fundamental Mechanisms of Desorption and Fragmentation Induced by Electronic Transitions at Surfaces’ in H. Stock, G. T. Babcock, and C. B. Moore (eds.),Annual Reviews of Physical Chemistry, Vol. 40, Annual Reviews Inc., Palo Alto (1989), p. 173.

    Google Scholar 

  43. R. Meming and G. Kursten:Ber. Bunsenges. Physik. Chem. 76, 4 (1972).

    Google Scholar 

  44. W. Schmickler:J. Electroanal. Chem. 100, 533 (1979).

    Google Scholar 

  45. W. L. Reynolds and R. W. Lumry:Mechanisms of Electron Transfer, The Ronald Press Co., New York (1966), pp. 149–154.

    Google Scholar 

  46. L. N. Mackey and T. Kuwana:Bioelectrochem. Bioenerg. 3, 596 (1976).

    Google Scholar 

  47. C. J. Schoot, J. J. Ponjee, H. T. van Dam, R. A. Van Doorn, and P. T. Bolwijn:Appl. Phys. Lett. 23, 64 (1973): H. T. van Dam and J. J. Ponjee:J. Electrochem. Soc. 121, 1555 (1974).

    Google Scholar 

  48. R. Jasinski:J. Electrochem. Soc. 124, 533 (1979).

    Google Scholar 

  49. R. C. Ciesliski and N. R. Armstrong:J. Electrochem. Soc. 127, 2605 (1980).

    Google Scholar 

  50. F. F. Fan, B. Reichman, and A. Bard:J. Am. Chem. Soc. 102, 1488 (1980).

    Google Scholar 

  51. A. Regis and J. Corset:J. Chim. Phys. 78, 687 (1981).

    Google Scholar 

  52. C. A. Melendres, P. C. Lee, and D. Meisel:J. Electrochem. Soc. 130, 1523 (1983).

    Google Scholar 

  53. T. Lu, R. L. Birke, and J. R. Lombardi:Langmuir 2, 305 (1986).

    Google Scholar 

  54. Q. Feng and T. M. Cotton:J. Phys. Chem. 90, 983 (1986).

    Google Scholar 

  55. A. Yasuda, H. Kondo, M. Itbashi, and J. Seto:Electroanal. Chem. 210, 265 (1986).

    Google Scholar 

  56. T. Lu and T. M. Cotton:J. Phys. Chem. 91, 5978 (1987).

    Google Scholar 

  57. Q. Feng, W. Yue, and T. M. Cotton:J. Phys. Chem. 94, 2082 (1990).

    Google Scholar 

  58. M. J. S. Dewar and N. Trinajstic:Collec. Czech. Chem. Commun. 35, 3136 (1970).

    Google Scholar 

  59. Y. Misono, K. Shibasaki, N. Yamasara, Y. Mineo, and K. Jtoh:J. Phys. Chem. 97, 6054 (1993).

    Google Scholar 

  60. G. L. McIntire, D. M. Chiappardi, R. L. Casselberry, and H. N. Blount:J. Chem. Phys. 86, 2632 (1982).

    Google Scholar 

  61. A. J. Fry: in S. Patai (ed.),The Chemistry of Amino, Nitroso, Nitro Compounds and their Derivatives, Part I, John Wiley and Son, New York (1982), p. 320.

    Google Scholar 

  62. I. Rubinstein:J. Electroanal. Chem. 183, 379 (1985).

    Google Scholar 

  63. W. J. Albery, B. A. Coles, and A. M. Couper:J. Electroanal. Chem. 65, 901 (1975).

    Google Scholar 

  64. C. Shi, W. Zhang, R. L. Birke, and J. R. Lombardi:J. Phys. Chem. 94, 4767 (1990).

    Google Scholar 

  65. C. Shi, W. Zhang, R. L. Birke, and J. R. Lombardi:J. Phys. Chem. 95, 6276 (1991).

    Google Scholar 

  66. P. Gao, D. Gosztola, and M. J. Weaver:J. Phys. Chem. 92, 7122 (1988).

    Google Scholar 

  67. P. Gao, D. Gosztola, and M. J. Weaver:Anal. Chim. Acta 212, 201 (1988).

    Google Scholar 

  68. C. Nishihara and M. Kaise:J. Electroanal. Chem. 149, 287 (1983).

    Google Scholar 

  69. C. Shi, W. Zhang, R. L. Birke, and J. R. Lombardi: unpublished results (1993).

  70. P. F. Heelis:Chem. Soc. Rev. 11, 15 (1982).

    Google Scholar 

  71. J. Yamase:Photochem. Photobiol. 34, 11 (1981).

    Google Scholar 

  72. W. Zhang, R. L. Birke, and J. R. Lombardi: unpublished results (1993).

  73. M. Abe: in R. J. H. Clark and R. E. Hester (eds.),Spectroscopy of Biological Systems, Ch. 7, John Wiley & Sons Ltd (1986) and references cited therein.

  74. P. F. Heelis, B. J. Parsons, B. Thomas, and G. O. Phillips:J. Chem. Soc. Chem. Commun. 954 (1985).

  75. P. F. Heelis, B. J. Parsons, G. O. Phillips, and A. J. Swallow:J. Phys. Chem. 90, 6833 (1986).

    Google Scholar 

  76. N. Getoff, S. Solar, and D. B. McCormick;Science 201, 616 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birke, R.L., Lombardi, J.R. Investigation of radical ions with time-resolved surface enhanced Raman spectroscopy. Mol Eng 4, 277–310 (1994). https://doi.org/10.1007/BF01004058

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004058

Key words

Navigation