Advertisement

Molecular Engineering

, Volume 4, Issue 1–3, pp 229–257 | Cite as

Fourier transform electron paramagnetic resonance studies of photochemical reactions in heterogeneous media

  • Hans van Willigen
  • Patricia R. Levstein
Part III: Trends In Modern Techniques
  • 34 Downloads

Abstract

FT-EPR has proved to be an excellent spectroscopic technique for the study of free radicals generated in photochemical reactions. The high spectral and time resolution make it possible to identify transient free radicals. Analysis of the time dependence of the spectra gives data on the kinetics of radical formation and decay. Chemically induced dynamic electron polarization (CIDEP) effects give information on reaction mechanisms and radical pair characteristics. Relaxation and linewidths data provide an insight into molecular motion. This contribution reviews instrumental aspects of the technique and CIDEP mechanisms that can affect the spectra. The utility of the method is illustrated with a discussion of applications in the study of photoinduced electron transfer reactions in homogeneous and heterogeneous media.

Key words

EPR photochemistry radicals triplets CIDEP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Wertz:Chem. Rev. 55, 829 (1955).Google Scholar
  2. 2.
    J. A. Weil, J. R. Bolton, and J. A. Wertz:Electron Paramagnetic Resonance, Wiley, New York (1993).Google Scholar
  3. 3.
    K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko: in Y. N. Molin (ed.),Spin Polarization and Magnetic Effects in Radical Reactions, Elsevier, Amsterdam (1984).Google Scholar
  4. 4.
    A. D. Trifunac, R. G. Lawler, D. M. Bartels, and M. C. Thurauer:Progress in Reaction Kinetics 14, 43 (1986).Google Scholar
  5. 5.
    P. J. Hore: in A. J. Hoff (ed.),Advanced EPR: Applications in Biology and Biochemistry, Elsevier, Amsterdam, pp. 405–440 (1989).Google Scholar
  6. 6.
    K. A. McLaughlan: in L. Kevan and M. K. Bowman (eds.),Modern Pulsed and Continuous-Wave Electron Spin Resonance, Wiley, New York, pp. 285–364 (1990).Google Scholar
  7. 7.
    B. Smaller, J. R. Remko, and E. C. Avery:J. Chem. Phys. 48, 5174 (1968).Google Scholar
  8. 8.
    H. Paul:Chem. Phys. 40, 265 (1979);43, 294 (1979).Google Scholar
  9. 9.
    N. C. Verma and R. W. Fessenden:J. Chem. Phys. 58, 2501 (1973).Google Scholar
  10. 10.
    S. S. Kim and S. I. Weissman:J. Magn. Res. 24, 167 (1976).Google Scholar
  11. 11.
    M. D. E. Forbes, J. Peterson, and C. S. Breivogel:Rev. Sci. Instr. 62, 2662 (1991).Google Scholar
  12. 12.
    J. N. Turro, I. V. Koptyung, H. van Willigen, and K. A. McLauchlan:J. Magn. Res. A109, 121 (1994).Google Scholar
  13. 13.
    A. D. Milov, M. D. Schirov, V. E. Khmelinskii, and Y. D. Tsvetkov:Dokl. Acad. Nauk SSR 218, 878 (1974).Google Scholar
  14. 14.
    A. D. Trifunac and J. R. Norris:Chem. Phys. Lett. 59, 140 (1978).Google Scholar
  15. 15.
    A. D. Trifunac and R. G. Lawler:Chem. Phys. Lett. 84, 515 (1981).Google Scholar
  16. 16.
    D. M. Bartels, R. G. Lawler, and A. D. Trifunac:J. Chem. Phys. 83, 2686 (1985).Google Scholar
  17. 17.
    O. Dobbert, T. Prisner, and K. P. Dinse:J. Magn. Res. 70, 173 (1986).Google Scholar
  18. 18.
    R. J. Massoth: Thesis, University of Kansas (1987).Google Scholar
  19. 19.
    J. Gorcester and J. H. Freed:J. Chem. Phys. 88, 4678 (1988).Google Scholar
  20. 20.
    P. R. Levstein and H. van Willigen:J. Chem. Phys. 95, 900 (1991).Google Scholar
  21. 21.
    For a recent review see H. van Willigen, P. R. Levstein, and M. H. Ebersole:Chem. Rev. 93, 173 (1993).Google Scholar
  22. 22.
    A. Derome:Modern NMR Techniques for Chemistry Research, Pergamon Press, Oxford (1987).Google Scholar
  23. 23.
    A. Schweiger:Angew. Chem., Int. Ed. 30, 265 (1991).Google Scholar
  24. 24.
    P. R. Levstein, P. Doering, and H. van Willigen:Chem. Phys. Lett. 197, 265 (1992).Google Scholar
  25. 25.
    W. Froncisz and J. S. Hyde:J. Magn. Res. 47, 515 (1982).Google Scholar
  26. 26.
    S. Pfenninger, J. Forrer, A. Schweiger, and Th. Weiland:Rev. Sci. Instrum. 59, 752 (1988).Google Scholar
  27. 27.
    A. Schweiger: in L. Kevan and M. K. Bowman (eds.),Modern Pulsed and Continuous-Wave Electron Spin Resonance, Wiley, New York, pp. 43–118 (1990).Google Scholar
  28. 28.
    J. H. Freed: in L. Kevan and M. K. Bowman (eds.),Modern Pulsed and Continuous-Wave Electron Spin Resonance, Wiley, New York, pp. 119–194 (1990).Google Scholar
  29. 29.
    T. Prisner, O. Dobbert, K. P. Dinse, and H. van Willigen:J. Am. Chem. Soc. 110, 1622 (1988).Google Scholar
  30. 30.
    K. P. Dinse, H. van Willigen, O. Dobbert, and T. Prisner: in C. P. Keijzers, E. J. Reijerse, and J. Schmidt (eds.),Pulsed EPR: A New Field of Applications, North Holland, Amsterdam, pp. 89–95 (1989).Google Scholar
  31. 31.
    H. Barkhuijsen, R. de Beer, W. M. M. J. Bouvée, and D. van Ormondt:J. Magn. Res. 61, 465 (1985).Google Scholar
  32. 32.
    R de Beer and D. van Ormondt: in A. Hoff (ed.),Advanced EPR: Applications in Biology and Biochemistry, Elsevier, Amsterdam, pp. 135–173 (1989).Google Scholar
  33. 33.
    J. K. S. Wan, S. K. Wong, and D. A. Hutchinson:Acc. Chem. Res. 7, 58 (1974).Google Scholar
  34. 34.
    F. J. Adrian:J. Chem. Phys. 61, 4875 (1974).Google Scholar
  35. 35.
    M. A. El-Sayed:Ann. Rev. Phys. Chem. 26, 235 (1975).Google Scholar
  36. 36.
    J. H. van der Waals, W. G. van Dorp, and T. J. Schaafsma: in D. Dolphin (ed.),The Porphyrins, Vol. 4, Academic Press, New York, pp. 257–312 (1979).Google Scholar
  37. 37.
    P. W. Atkins and G. T. Evans:Mol. Phys. 27, 1633 (1974).Google Scholar
  38. 38.
    P. W. Atkins, A. J. Dobbs, and K. A. McLauchlan:Chem. Phys. Lett. 29, 616 (1974).Google Scholar
  39. 39.
    S. Basu, A. I. Grant, and K. A. McLauchlan:Chem. Phys. Lett. 94, 517 (1983).Google Scholar
  40. 40.
    M. K. Bowman, M. Toporowicz, J. R. Norris, T. J. Michalski, A. Angerhofer and H. Levanon:Isr. J. Chem. 28, 215 (1988).Google Scholar
  41. 41.
    A. Angerhofer, M. Toporowicz, M. K. Bowman, J. R. Norris, and H. Levanon:J. Phys. Chem. 92, 7164 (1988).Google Scholar
  42. 42.
    P. R. Levstein and H. van Willigen:Chem. Phys. Lett. 187, 415 (1991).Google Scholar
  43. 43.
    D. A. Leinwand, S. M. Lefkowitz, and H. C. Brenner:J. Am. Chem. Soc. 107, 6179 (1985).Google Scholar
  44. 44.
    R. Kaptein and L. J. Oosterhoff:Chem. Phys. Lett 4, 214 (1969).Google Scholar
  45. 45.
    F. J. Adrian:J. Chem. Phys. 54, 3918 (1971).Google Scholar
  46. 46.
    J. H. Freed and J. B. Pedersen:Adv. Magn. Res. 8, 1 (1976).Google Scholar
  47. 47.
    A. D. Trifunac:Chem. Phys. Lett. 49, 457 (1977).Google Scholar
  48. 48.
    A. D. Trifunac and D. J. Nelson:Chem. Phys. Lett. 46, 346 (1977).Google Scholar
  49. 49.
    T. J. Burkey, J. Lusztyk, K. U. Ingold, J. K. S. Wan, and F. J. Adrian:J. Phys. Chem. 89, 4286 (1985).Google Scholar
  50. 50.
    H. van Willigen, M. Vuolle, and K. P. Dinse:J. Phys. Chem. 93, 2441 (1989).Google Scholar
  51. 51.
    C. D. Buckley, D. A. Hunter, P. J. Hore, and K. A. McLauchlan:Chem. Phys. Lett. 135, 307 (1987).Google Scholar
  52. 52.
    G. L. Closs, M.D. E. Forbes, and J. R. Norris:J. Phys. Chem. 91, 3592 (1987).Google Scholar
  53. 53.
    K. Tominaga, S. Yamauchi, and N. Hirota:Chem. Phys. Lett. 149, 32 (1988).Google Scholar
  54. 54.
    D. Stehlik, C. H. Bock, and J. Petersen:J. Phys. Chem. 93, 1612 (1989).Google Scholar
  55. 55.
    K. Hasharoni, H. Levanon, J. Tang, M. K. Bowman, J. R. Norris, D. Gust, T. A. Moore, and A. L. Moore:J. Am. Chem. Soc. 112, 6477 (1990).Google Scholar
  56. 56.
    M. C. Thurnauer and J. R. Norris:Chem. Phys. Lett. 76, 557 (1980).Google Scholar
  57. 57.
    K. P. Dinse, M. Plüschau, G. Kroll, T. Prisner, and H. van Willigen:Bull. Magn. Res. 11, 174 (1989).Google Scholar
  58. 58.
    G. Kroll, M. Plüschau, K. P. Dinse, and H. van Willigen:J. Chem. Phys. 93, 8709 (1990).Google Scholar
  59. 59.
    T. Imamura, O. Onitsuka, and K. Obi:J. Phys. Chem. 90, 6741 (1986).Google Scholar
  60. 60.
    W. S. Jenks and N. J. Turro:Tetrahedron Lett. 30, 4469 (1989).Google Scholar
  61. 61.
    C. Blättler, F. Jent, and H. Paul:Chem. Phys. Lett. 166, 375 (1990).Google Scholar
  62. 62.
    A. Kawai, T. Okutsu, and K. Obi:J. Phys. Chem. 95, 9130 (1991).Google Scholar
  63. 63.
    A. Kawai and K. Obi:J. Phys. Chem. 96, 52 (1992).Google Scholar
  64. 64.
    C. Blättler and H. Paul:Res. Chem. Intermed. 16, 201 (1991).Google Scholar
  65. 65.
    G. H. Goudsmit, H. Paul, and A. Shushin:J. Phys. Chem. 97, 13243 (1993).Google Scholar
  66. 66.
    A. Shushin:Chem. Phys. Lett. 208, 173 (1993).Google Scholar
  67. 67.
    M. Plüschau, A. Zahl, K. P. Dinse, and H. van Willigen:J. Chem. Phys. 90, 3153 (1989).Google Scholar
  68. 68.
    M. Ebersole, P. R. Levstein, and H. van Willigen:J. Phys. Chem. 96, 9310 (1992).Google Scholar
  69. 69.
    M. Ebersole: Thesis, University of Massachusetts (1992).Google Scholar
  70. 70.
    A. Berman, A. Michaeli, J. Feitelson, M. K. Bowman, J. R. Norris, H. Levanon, E. Vogel, and P. Koch:J. Phys. Chem. 96, 3041 (1992).Google Scholar
  71. 71.
    D. Beckert, M. Plüschau, and K. P. Dinse:J. Phys. Chem. 96, 3193 (1992).Google Scholar
  72. 72.
    M. Plüschau, G. Kroll, K.-P. Dinse, and D. Beckert:J. Phys. Chem. 96, 8820 (1992).Google Scholar
  73. 73.
    G. Zilber, V. Rozenshtein, M. Rabinovitz, and H. Levanon:Chem. Phys. Lett. 196, 255 (1992).Google Scholar
  74. 74.
    V. Rozenshtein, G. Zilber, M. Rabinovitz, and H. Levanon:J. Am. Chem. Soc. 115, 5193 (1993).Google Scholar
  75. 75.
    A. Michaeli, A. Regev, Y. Mazur, J. Feitelson, and H. Levanon:J. Phys. Chem. 97, 9154 (1993).Google Scholar
  76. 76.
    P. R. Levstein, H. van Willigen, M. H. Ebersole, and F. W. Pijpers:Mol. Cryst. Liquid Cryst. 194, 123 (1991).Google Scholar
  77. 77.
    P. R. Levstein, M. H. Ebersole, and H. van Willigen:Proc. Indian Acad. Sci.)104, 681 (1992).Google Scholar
  78. 78.
    P. R. Levstein and H. van Willigen:Colloids and Surfaces A 72, 43 (1993).Google Scholar
  79. 79.
    B. Venkataraman, B. G. Segal, and G. K. Fraenkel:J. Chem. Phys. 30, 1006 (1959).Google Scholar
  80. 80.
    B. Hoffman:J. Am. Chem. Soc. 97, 1688 (1975).Google Scholar
  81. 81.
    I. Y. Chan, W. G. van Dorp, T. J. Schaafsma, and J. H. van der Waals:Mol. Phys. 22, 741, 753 (1971).Google Scholar
  82. 82.
    A. I. Shushin:Chem. Phys. Lett. 162, 409 (1989).Google Scholar
  83. 83.
    J. Schlüpmann, K. M. Salikhov, M. Plato, P. Jaegerman, F. Lendzian, and K. Möbius:Applied Magn. Res. 2, 117 (1991).Google Scholar
  84. 84.
    K. Kalyanasundaram:Photochemistry in Microheterogeneous Systems, Academic Press, New York (1987).Google Scholar
  85. 85.
    M. Grätzel: in V. Balzani (ed.),Supramolecular Photochemistry, NATO ASI Series, Reidel, Dordrecht, p. 435 (1987).Google Scholar
  86. 86.
    K. M. Kadish, G. B. Maiya, C. Araullo, and R. Guillard:Inorg. Chem. 28, 2725 (1989).Google Scholar
  87. 87.
    D. S. Leniart, H. D. Connor, and J. Freed:J. Chem. Phys. 63, 165 (1975).Google Scholar
  88. 88.
    K. Suga, K. Maemura, M. Fujihira, and S. Aoyagui:Bull. Chem. Soc. Jpn. 60, 2221 (1987).Google Scholar
  89. 89.
    L. J. Johnston: in V. Ramamurthy (ed.),Photochemistry in Organized and Constrained Media, VCH Publishers, New York, pp. 359–386 (1991).Google Scholar
  90. 90.
    M. D. E. Forbes, K. E. Dukes, T. L. Myers, H. D. Maynard, C. S. Breivogel, and H. B. Jaspan:J. Phys. Chem. 95, 10547 (1991).Google Scholar
  91. 91.
    M. D. E. Forbes, T. L. Myers, K. E. Dukes, and H. D. Maynard:J. Am. Chem. Soc. 114, 353 (1992).Google Scholar
  92. 92.
    S. Kazanis, A. Azarani, and L. J. Johnston:J. Phys. Chem. 95, 4430 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Hans van Willigen
    • 1
  • Patricia R. Levstein
    • 1
  1. 1.Department of ChemistryUniversity of Massachusetts at BostonBostonUSA

Personalised recommendations