Skip to main content
Log in

ESR studies of organic radical cations in zeolites

  • Part II: Structure And Reactivity Of Radicals On Surfaces
  • Published:
Molecular Engineering

Abstract

An overview is presented of the formation of organic radical cations in zeolites. Attention is paid firstly to their deliberate production by radiolysis and then to the spontaneous oxidation by activated H-exchanged zeolites of adsorped organic substrates. The nature of the oxidation site arising from thermal pretreatment in oxygen is considered, and possible mechanistic details are outlined for the frequently observed oligomerisations of simple substrates. The broad conclusions are that radical cations are formed from that component of the organic product mixture with the lowest ionisation potential, and that the dominant molecular transformations are driven by proton (Brønsted) catalysis: it appears that there is little evidence that radical cations are involved particularly in heterogeneous catalysis by zeolites, but they may well precede the formation of neutral radicals which are implicated as reaction intermediates. The reorientational dynamics of alkene radical cations in zeolites, as determined by ESR spectroscopy, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. R. Symons:Chem. Soc. Rev. 13, 393 (1984).

    Google Scholar 

  2. M. Shiotani:Magn. Reson. Rev. 12, 333 (1987).

    Google Scholar 

  3. C. J. Rhodes: inSpecialist Periodical Reports on Electron Spin Resonance, Vol. 13A. The Royal Society of Chemistry, Cambridge (1992).

    Google Scholar 

  4. K. Toriyama, K. Nunome, and M. Iwasaki:J. Am. Chem. Soc. 109, 4496 (1987).

    Google Scholar 

  5. X.-Z. Qin and A. D. Trifunac:J. Phys. Chem. 94, 4751 (1990).

    Google Scholar 

  6. M. V. Barnabas and A. D. Trifunac:Chem. Phys. Lett. 187, 565 (1991).

    Google Scholar 

  7. M. V. Barnabas and A. D. Trifunac:Chem. Phys. Lett. 193, 298 (1992).

    Google Scholar 

  8. X.-Z. Qin and A. D. Trifunac:J. Phys. Chem. 95, 6466 (1991).

    Google Scholar 

  9. M. V. Barnabas and A. D. Trifunac:J. Chem. Soc., Chem. Commun. 813, (1993).

  10. M. C. R. Symons and J. L. Wyatt:J. Chem. Res. (S), 362 (1989).

  11. A. Hasegawa, M. Shiotani, and F. Williams:Faraday Discuss. Chem. Soc. 63, 157 (1987).

    Google Scholar 

  12. C. J. Rhodes, C. Glidewell, and H. Agirbas:J. Chem. Soc., Faraday Trans. 87, 3171 (1991).

    Google Scholar 

  13. K. B. Yoon and J. K. Kochi:J. Chem. Soc., Chem. Commun. 510, (1988).

  14. K. Toriyama, K. Nunome, and M. Iwasaki:J. Phys. Chem. 90, 6836 (1986).

    Google Scholar 

  15. K. Toriyama, K. Nunome, and M. Iwasaki:J. Chem. Phys. 77, 5891 (1982).

    Google Scholar 

  16. K. Toriyama, K. Nunome, and M. Iwasaki:J. Phys. Chem. 84, 2149 (1981).

    Google Scholar 

  17. M. Iwasaki, K. Toriyama, and K. Nunome:Radiat. Phys. Chem. 105, 414 (1987).

    Google Scholar 

  18. M. Iwasaki, K. Toriyama, and K. Nunome:J. Chem. Phys. 79, 2499 (1983).

    Google Scholar 

  19. M. Iwasaki, K. Toriyama, M. Fukaya, H. Muto and K. Nunome:J. Phys. Chem. 89, 5278 (1985).

    Google Scholar 

  20. D. L. Griscom:Phys. Rev. B 40, 4224 (1989).

    Google Scholar 

  21. R. V. Lloyd and R. V. Williams:J. Phys. Chem. 89, 5379 (1985).

    Google Scholar 

  22. B. P. Roberts:Tetrahedron Lett. 5385 (1991).

  23. I. D. Reid, C. J. Rhodes and E. Roduner:Tetrahedron Lett. 5617 (1992).

  24. X.-Z. Qin and F. Williams:J. Am. Chem. Soc. 106, 7640 (1984).

    Google Scholar 

  25. X.-Z. Qin and A. D. Trifunac:J. Phys. Chem. 94, 3188 (1990).

    Google Scholar 

  26. K. Ushida, T. Shida, and K. Shimokoshi:J. Phys. Chem. 93, 5388 (1989).

    Google Scholar 

  27. X.-Z. Qin, L. D. Snow, and F. Williams:J. Phys. Chem. 89, 3602 (1985).

    Google Scholar 

  28. G. A. Olah, N. Hartz, G. Rasul, and G. K. Surya Prakash:J. Am. Chem. Soc. 115, 6985 (1993).

    Google Scholar 

  29. K. Somekawa, K. Haddaway, P. Mariano and J. A. Tossel:J. Am. Chem. Soc. 106, 3060 (1984).

    Google Scholar 

  30. C. J. Rhodes:J. Am. Chem. Soc. 110, 4446 (1988).

    Google Scholar 

  31. H. D. Roth:Acc. Chem. Res. 20, 43 (1987).

    Google Scholar 

  32. J. L. Gebicki, J. Gebicki, and J. Mayer:Radiat. Phys. Chem. 50, 165 (1987).

    Google Scholar 

  33. M. I. Loktev and A. A. Slinkin:Russ. Chem. Rev. 45, 807 (1976).

    Google Scholar 

  34. V. Ramamurthy, J. V. Caspar, and D. R. Corbin:J. Am. Chem. Soc. 113, 594 (1991).

    Google Scholar 

  35. N. H. Sagert, R. M. L. Pouteau, M. G. Bailey, and F. P. Sargent:Can. J. Chem. 50, 2041 (1972).

    Google Scholar 

  36. A. V. Kucherov, A. A. Slinkin, D. A. Kondratyev, T. N. Bondarenko, A. M. Rubinstein and Kh. M. Minachev:J. Mol. Cat. 37, 107 (1986).

    Google Scholar 

  37. C. J. Rhodes:J. Chem. Soc., Faraday Trans.87, 3179 (1991).

    Google Scholar 

  38. S. Shih:J. Catal. 79, 390 (1983).

    Google Scholar 

  39. C. J. Rhodes:Colloids and Surfaces A: Physicochemical and Engineering Aspects 72, 111 (1993).

    Google Scholar 

  40. A. V. Kucherov and A. A. Slinkin:Kinet. Katal. 24, 947 (1983).

    Google Scholar 

  41. A. A. Slinkin and A. V. Kucherov:Kinet. Katal. 24, 955 (1983).

    Google Scholar 

  42. P. L. Corio and S. Shih:J. Catal. 18, 126 (1970).

    Google Scholar 

  43. C. J. Rhodes, I. D. Reid, and E. Roduner:J. Chem. Soc., Chem. Commun. 512 (1993).

  44. Y. Kurita, T. Sonoda, and M. Sato:J. Catal. 19, 82 (1970).

    Google Scholar 

  45. R. Erickson, M. Lindgren, A. Lund, and L. Sjoqvist:Colloids and Surfaces A: Physicochemical and Engineering Aspects 72, 207 (1993).

    Google Scholar 

  46. I. R. Leith:J. Chem. Soc., Chem. Commun. 1282 (1972).

  47. T. Ichikawa, M. Yamaguchi, and H. Yoshida:J. Phys. Chem. 91, 6400 (1987).

    Google Scholar 

  48. E. Roduner, L.-M. Wu, R. Crockett, and C. J. Rhodes:Catal. Lett. 14, 373 (1992).

    Google Scholar 

  49. R. Crockett and E. Roduner: to be published.

  50. T. Shida, Y. Egawa, H. Kubodera, and H. Kato:J. Chem. Phys. 73, 5963 (1980).

    Google Scholar 

  51. P. L. Corio and S. Shih:J. Phys. Chem. 75, 3475 (1971).

    Google Scholar 

  52. S. Shih:J. Phys. Chem. 79, 2201 (1975).

    Google Scholar 

  53. A. V. Kucherov and A. A. Slinkin:Kinet. Katal. 23, 997 (1982).

    Google Scholar 

  54. A. Tabata and A. Lund:Chem. Phys. 75, 379 (1983).

    Google Scholar 

  55. A. V. Veselov, V. I. Melekhov, O. A. Anisomov, Yu. N. Molin, K. Ushida, and T. Shida:Chem. Phys. Lett. 133, 478 (1987).

    Google Scholar 

  56. R. Crockett and E. Roduner:J. Chem. Soc., Perkin Trans, II, 1503 (1993).

  57. P. A. Jacobs and J. A. Martens: in H. Van Bekkum, E. M. Finigen, and J. C. Jansen (eds.),Studies in Surface Science and Catalysis, Vol. 58, Elsevier, Amsterdam (1991).

    Google Scholar 

  58. C. J. Rhodes and M. Standing:J. Chem. Soc., Perkin Trans. II, 1455 (1992).

  59. R. Crockett and E. Roduner:J. Chem. Soc., Perkin Trans. II, (1994) in press.

  60. K. Ohta, M. Shiotani, J. Sohma, A. Hasegawa, and M. C. R. Symons:Chem. Phys. Lett. 136, 465 (1987).

    Google Scholar 

  61. G. E. Nelson and E. A. Williams: in R. W. Taft (ed.),Progress in Physical Organic Chemistry, Vol. 12, Wiley, New York (1976), p. 229.

    Google Scholar 

  62. J. Fujisawa, T. Takayasagi, S. Sato, and K. Shimokoshni:Bull. Chem. Soc. Jpn. 61, 1527 (1988).

    Google Scholar 

  63. E. Butcher, C. J. Rhodes, M. Standing, R. S. Davidson, and R. Bowser:J. Chem. Soc., Perkin Trans. II 1469 (1992).

  64. E. Roduner, R. Crockett, and L.-M. Wu:J. Chem. Soc., Faraday Trans. 89, 2101 (1993).

    Google Scholar 

  65. J. O. Titilaze, S. C. Parker, F. S. Stone and C. R. A. Catlow:J. Phys. Chem. 95, 4038 (1991).

    Google Scholar 

  66. A. V. Kucherov, A. A. Slinkin, K. M. Gitis, and G. V. Isagulants:Catal. Lett. 1, 311 (1988).

    Google Scholar 

  67. F. R. Chen and J. J. Fripiat:J. Phys. Chem. 97, 5796 (1993).

    Google Scholar 

  68. E. Roduner and R. Crockett:J. Phys. Chem. 97, 11853 (1993).

    Google Scholar 

  69. L. C. Anderson, M. Xu, C. E. Mooney, M. P. Rosynek, and J. H. Lunsford:J. Am. Chem. Soc. 115, 6322 (1993).

    Google Scholar 

  70. V. Amir-Ebrihimi, J. Grimshaw, E. A. McIlgorm, T. R. B. Mitchel, and J. J. Rooney:J. Mol. Cat. 27, 337 (1984).

    Google Scholar 

  71. W. Matir and J. H. Lunsford:J. Am. Chem. Soc. 103, 3728 (1981); D. J. Driscoll, W. Matir, J.-X. Wang and J. H. Lunsford:J. Am. Chem. Soc. 107, 58 (1985); W. Matir and J. H. Lunsford:J. Am. Chem. Soc. 107, 5062 (1985).

    Google Scholar 

  72. J. K. A. Clarke, R. Darcy, B. F. Hegarty, E. O'Donoghue, V. Amir-Ebrahimi, and J. J. Rooney:J. Chem. Soc., Chem. Commun. 425 (1986).

  73. C. D. Chang, S. D. Hellring, and J. A. Pearson:J. Catal. 115, 282 (1989).

    Google Scholar 

  74. H. Choukrous, D. Brunel, and A. Germain:J. Chem. Soc., Chem. Commun. 6 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, C.J., Hinds, C.S. ESR studies of organic radical cations in zeolites. Mol Eng 4, 119–145 (1994). https://doi.org/10.1007/BF01004052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004052

Key words

Navigation