Advertisement

Molecular Engineering

, Volume 4, Issue 1–3, pp 89–117 | Cite as

Electron magnetic resonance of aromatic radicals on metal oxide surfaces

  • R. B. Clarkson
  • Karen Mattson
  • Wenjun Shi
  • Wei Wang
  • R. L. Belford
Part II: Structure And Reactivity Of Radicals On Surfaces

Abstract

Multi-frequency electron magnetic resonance (EMR) methods provide a powerful approach to the study of radicals adsorbed on metal oxide surfaces. The structure, adsorption characteristics, surface environment, and mobility of surface species often can be determined. In this review, EMR studies of radicals produced on oxide surfaces from polynuclear aromatic hydrocarbons, nitroaromatics, and sulfur-containing aromatics are considered. Intra- and intermolecular spin interactions are probed by techniques which emphasize Zeeman or non-Zeeman interactions, and couplings between unpaired electrons and nuclei such as1H,14N,17O,25Mg, and27Al are discussed.

Key words

Electron magnetic resonance EPR ENDOR ESE ESEEM aromatic radicals nitroaromatics thiophenes metal oxide surfaces alumina silica-alumina silica magnesia titania powder lineshape orientation selection exact cancellation EPR simulation ENDOR simulation ESEEM simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. O'Reilly:Adv. Catal. 12, 31 (1960).Google Scholar
  2. 2.
    R. L. Belford, R. B. Clarkson, J. B. Cornelius, K. S. Rothenberger, M. J. Nilges, and M. D. Timken: ‘EPR Over Three Decades of Frequency: Radiofrequency to Infrared’, in J. A. Weil (Ed.),Electron Magnetic Resonance of the Solid State, Chemical Institute of Canada, Ottawa, p. 21 (1987).Google Scholar
  3. 3.
    R. L. Belford and R. B. Clarkson: ‘Multifrequency Electron Paramagnetic Resonance Spectroscopy’, in R. E. Botto and Y. Sanada (Eds.),Magnetic Resonance of Carbonaceous Solids, Advances in Chemistry Series 229, American Chemical Society, Washington, p. 107 (1993); W. Wang, R. L. Belford, R. B. Clarkson, P. H. Davis, J. Forrer, M. J. Nilges, M. D. Timken, T. Walczak, M. C. Thurnauer, J. R. Norris, and Y. Zhang:Appl. Magn. Res. 6 (1994).Google Scholar
  4. 4.
    J. S. Hyde, G. H. Rist, and L. E. G. Eriksson:J. Phys. Chem. 72, 4269 (1968).Google Scholar
  5. 5.
    L. Kevan and L. D. Kispert:Electron Spin Double Resonance Spectroscopy, John Wiley, New York (1976).Google Scholar
  6. 6.
    L. Kevan and P. A. Narayana: ‘Disordered Matrices’, in M. M. Dorio and J. H. Freed (Eds.),Multiple Electron Resonance Spectroscopy, Plenum Press, New York, p. 229 (1979).Google Scholar
  7. 7.
    H. Kurreck, B. Kirste, and W. Lubitz:Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution, VCH Publishers, New York (1988).Google Scholar
  8. 8.
    C. Gemperle and A. Schweiger:Chem. Revs. 91, 1481 (1991).Google Scholar
  9. 9.
    L. Kevan and R. N. Schwartz:Time Domain Electron Spin Resonance, John Wiley, New York (1979).Google Scholar
  10. 10.
    L. Kevan and M. K. Bowman:Modern Pulsed and Continuous-Wave Electron Spin Resonance, John Wiley, New York (1990).Google Scholar
  11. 11.
    S. A. Dikanov and Yu. D. Tsvetkov:Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy, CRC Press, Boca Raton (1992).Google Scholar
  12. 12.
    H. L. Flanagan and D. J. Singel:J. Chem. Phys. 87, 5606 (1987).Google Scholar
  13. 13.
    S. A. Cosgrove and D. J. Singel:J. Phys. Chem. 94, 2619 (1990).Google Scholar
  14. 14.
    M. J. Nilges;Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1979).Google Scholar
  15. 15.
    R. L. Belford, P. H. Davis, G. G. Belford, and T. M. Lenhardt:ACS Symposium Series No. 5, p. 40 (1974).Google Scholar
  16. 16.
    L. R. Dalton and A. L. Kwiram:J. Chem. Phys. 57, 1132 (1972).Google Scholar
  17. 17.
    C. G. Hurst, T. A. Henderson, and R. W. Kreilick:J. Am. Chem. Soc. 107, 7294 (1985).Google Scholar
  18. 18.
    Fa. S. Jiang, T. M. Zuberi, J. B. Cornelius, R. B. Clarkson, R. B. Gennis, and R. L. Belford:J. Am. Chem. Soc. 115, 10293 (1993).Google Scholar
  19. 19.
    J. B. Cornelius, J. McCracken, R. B. Clarkson, R. L. Belford, and J. Peisach:J. Phys. Chem. 94, 6977 (1990).Google Scholar
  20. 20.
    J. B. Cornelius:Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1987).Google Scholar
  21. 21.
    A. V. Astashkin, S. A. Dikanov, and Yu. D. Tsvetkov:Chem. Phys. Lett. 136, 204 (1987).Google Scholar
  22. 22.
    W. Spendley, G. R. Hext, and F. R. Himsworth:Technometrics 4, 441 (1962).Google Scholar
  23. 23.
    K. J. Mattson:Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1990).Google Scholar
  24. 24.
    A. J. Rooney and R. C. Pink:Proc. Chem. Soc. 70 (1961).Google Scholar
  25. 25.
    D. M. Brauer:Chem. Ind. (London) 177 (1961);J. Catal. 1, 372 (1962).Google Scholar
  26. 26.
    W. K. Hall:J. Catal. 1, 53 (1962).Google Scholar
  27. 27.
    A. Carrington, F. Dravnicks, and M. C. R. Symons:J. Chem. Soc. 947 (1959).Google Scholar
  28. 28.
    A. J. Bard, A. Ledwith, and H. J. Shine:Adv. Phys. Org. Chem. 13, 155 (1976).Google Scholar
  29. 29.
    G. Vincow and P. M. Johnson:J. Chem. Phys. 39, 1143 (1963).Google Scholar
  30. 30.
    G. M. Muha:J. Phys. Chem. 71, 633 (1967); B. D. Flockhart, J. A. N. Scott, and R. C. Pink:Trans. Faraday Soc. 62, 730 (1966).Google Scholar
  31. 31.
    G. M. Muha:J. Phys. Chem. 82, 1843 (1978).Google Scholar
  32. 32.
    L. Petrakis, P. L. Meyer, and T. P. Debies:J. Phys. Chem. 84, 1020 (1980); L. Petrakis, P. L. Meyer, and G. L. Jones:J. Phys. Chem. 84, 1029 (1980).Google Scholar
  33. 33.
    J. T. Richardson:J. Catal. 9, 172 (1967).Google Scholar
  34. 34.
    F. R. Dollish and W. K. Hall:J. Phys. Chem. 71, 1005 (1967).Google Scholar
  35. 35.
    I. C. Lewis and L. S. Singer:J. Phys Chem. 85, 354 (1981).Google Scholar
  36. 36.
    Y. Mao and J. K. Thomas:Langmuir 8, 2501 (1992); X. Liu and J. K. Thomas:Langmuir 9, 727 (1993).Google Scholar
  37. 37.
    G. M. Muha:J. Catal. 58, 470 (1979).Google Scholar
  38. 38.
    B. D. Flockhart and M. A. Salem:J. Colloid Interface Sci. 103, 76 (1985).Google Scholar
  39. 39.
    T. Wozniewski, E. Fedorynska, and S. Malinowski:J. Colloid Interface Sci. 87, 1 (1982).Google Scholar
  40. 40.
    W. Froncisz and J. S. Hyde:J. Chem. Phys. 73, 3123 (1980).Google Scholar
  41. 41.
    O. Y. Grinberg, A. A. Dubinskii, and Ya. S. Lebedev:Russ. Chem. Rev. Engl. Transl. 52, 850 (1983).Google Scholar
  42. 42.
    E. Haindl, K. Möbius, and H. Z. Oloff:Z. Naturforsch. 40a, 169 (1985).Google Scholar
  43. 43.
    A. J. Stone:Mol. Phys. 7, 311 (1964).Google Scholar
  44. 44.
    L. C. Snyder:J. Phys. Chem. 66, 2299 (1962).Google Scholar
  45. 45.
    H. Ohya-Nishiguchi:Bull. Chem. Soc. Jpn. 52, 7 (1979).Google Scholar
  46. 46.
    R. B. Clarkson, R. L. Belford, K. S. Rothenberger, and H. C. Crookham:J. Catal. 106, 500 (1987).Google Scholar
  47. 47.
    R. Makela and M. Voulle:Finn. Chem. Lett. 3, 66 (1984).Google Scholar
  48. 48.
    F. W. Heineken and T. C. Christidis:Proc. Congress Ampère 18th, 503 (1974).Google Scholar
  49. 49.
    H. Sang, H. Wang, and K. P. Such:Magn. Res. Chem. 30, 150 (1992).Google Scholar
  50. 50.
    R. Erickson, M. Lindgren, A. Lund, and L. Sjöqvist:Collolds and Surfaces A 72, 207 (1993).Google Scholar
  51. 51.
    R. I. Samoilova, A. V. Astashkin, S. A. Dikanov, D. Goldfarb, and E. V. Lunina:Colloids and Surfaces A 72, 29 (1993).Google Scholar
  52. 52.
    R. B. Clarkson: ‘ENDOR Studies of Radicals Adsorbed on Metal Oxide Powders’, in J. P. Fraissard and H. A. Resing (Eds.):Magnetic Resonance in Colloid and Interface Science, D. Reidel, Dordrecht, p. 425 (1980).Google Scholar
  53. 53.
    N. M. Atherton and C. E. Oliver:J. Chem. Soc. Faraday Trans. 84, 10 (1988).Google Scholar
  54. 54.
    A. H. Reddoch:J. Chem. Phys. 43, 225 (1965).Google Scholar
  55. 55.
    K. S. Rothenberger, H. C. Crookham, R. L. Belford, and R. B. Clarkson:J. Catal. 115, 430 (1989).Google Scholar
  56. 56.
    R. L. Burwell:J. Catal. 86, 301 (1984).Google Scholar
  57. 57.
    H. Knözinger:Catalysis by Acids and Bases, Elsevier, Amsterdam, p. 11 (1985).Google Scholar
  58. 58.
    P. A. Narayana, M. K. Bowman, D. Becker, L. Kevan, and R. N. Schwartz:J. Chem. Phys. 67, 1990 (1977).Google Scholar
  59. 59.
    O. Burghaus, M. Rohrer, T. Gotzinger, M. Plato, and K. Möbius:Meas. Sci. Technol. 3, 765 (1992).Google Scholar
  60. 60.
    L. Kevan:Acc. Chem. Res. 20, 1 (1987).Google Scholar
  61. 61.
    P. A. Snetsinger, J. B. Cornelius, R. B. Clarkson, M. K. Bowman, and R. L. Belford:J. Phys. Chem. 92, 3696 (1988).Google Scholar
  62. 62.
    S. A. Dikanov, V. F. Yudanov, R. I. Samiolova, and Yu. D. Tsvetkov:Chem. Phys. Lett. 52, 520 (1977).Google Scholar
  63. 63.
    R. B. Clarkson, M. D. Timken, D. R. Brown, H. C. Crookham, and R. L. Belford:Chem. Phys. Lett. 163, 277 (1989); R. B. Clarkson, D. R. Brown, J. B. Cornelius, H. C. Crookham, W.-J. Shi, and R. L. Belford:Pure & Appl. Chem. 64, 893 (1992).Google Scholar
  64. 64.
    A. J. Tench and R. L. Nelson:Trans. Faraday Soc. 63, 2254 (1967).Google Scholar
  65. 65.
    M. Branca and V. Indovina:J. Chem. Soc. Faraday Trans. 86, 403 (1990).Google Scholar
  66. 66.
    Wenjun Shi:Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1993).Google Scholar
  67. 67.
    C. J. Ultee:J. Phys. Chem. 64, 1873 (1960).Google Scholar
  68. 68.
    H. L. Flanagan, G. J. Gerfen, and D. J. Singel:J. Chem. Phys. 88, 20 (1988).Google Scholar
  69. 69.
    W. Shi, W. Wang, M. J. Nilges, R. B. Clarkson, and R. L. Belford: ‘Nitroaromatic Anions and Copper Sites: 2–4 GHz ESEEM and 95 GHz EPR’, 35th Rocky Mt. Conference on Analytical Chemistry-EPR Symposium, Denver, CO, July 25–29 (1993).Google Scholar
  70. 70.
    B. D. Flockhart, I. R. Leith, and R. C. Pink:Trans. Faraday Soc. 66, 469 (1969).Google Scholar
  71. 71.
    G. Hwang and H. Chon:Zeolites 10, 101 (1990).Google Scholar
  72. 72.
    Wei Wang:Ph.D. Dissertation, University of Illinois, Urbana, Illinois (1993).Google Scholar
  73. 73.
    R. B. Clarkson, Wei Wang, D. L. Brown, H. C. Crookham, and R. L. Belford:FUEL 69, 1405 (1990).Google Scholar
  74. 74.
    R B. Clarkson, W. Wang, D. L. Brown, H. C. Crookham, and R. L. Belford: ‘Electron Magnetic Resonance of Standard Coal Samples at Multiple Microwave Frequencies’, in R. Botto and Y. Sanada (Eds.):Techniques in Magnetic Resonance for Carbonaceous Solids, ACS Advances in Chemistry Series229, American Chemical Society, Washington, p. 507 (1993).Google Scholar
  75. 75.
    A. J. Stone:Mol. Phys. 6, 509 (1963).Google Scholar
  76. 76.
    P. D. Sullivan:J. Am. Chem. Soc. 90, 3618 (1968).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. B. Clarkson
    • 1
  • Karen Mattson
    • 2
  • Wenjun Shi
    • 2
  • Wei Wang
    • 2
  • R. L. Belford
    • 2
  1. 1.Department of Veterinary Clinical Medicine and the Illinois EPR Research CenterUniversity of IllinoisUrbanaUSA
  2. 2.Department of Chemistry and the Illinois EPR Research CenterUniversity of IllinoisUrbanaUSA

Personalised recommendations