Skip to main content
Log in

EPR characterization of oxide supported transition metal ions: Relevance to catalysis

  • Part I: Properties Of Catalytic Surfaces
  • Published:
Molecular Engineering

Abstract

EPR spectroscopy is a powerful tool to identify at a molecular level, the different steps of catalyst preparation, and of catalytic reactions:

  1. (i)

    Deposition of paramagnetic transition metal ions onto a support is monitored, and the coordination sphere of the metallic center is characterized by EPR.

  2. (ii)

    The catalyst is also characterized after activation (thermal oxidation or reduction):

  • - the distribution among the different sites in zeolites can be determined;

  • - the dispersion of the active phase may be appreciated;

  • - the unsaturation degree of the active site may be evaluated using probe molecules such as water or13C enriched carbon monoxide.

  1. (iii)

    The catalytic mechanisms can be investigated by studying the elementary steps of the catalytic reaction, as illustrated for methanol oxidation over Mo/SiO2 catalysts whose EPR results have extended the reaction mechanism proposed on the basis of kinetic data. In addition, reaction intermediates may be isolated inquasi-in situ conditions as in the case of olefin oligomerization catalyzed by Ni/SiO2 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. O'Reilly:Adv. Catal. 12 31 (1960).

    Google Scholar 

  2. R. F. Howe:Colloids and Surfaces A 72 353 (1993).

    Google Scholar 

  3. M. Che and L. Bonneviot:Z. Phys. Chem., Neue Folge 112 113 (1987).

    Google Scholar 

  4. M. Che and Y. Ben Taarit:Adv. Colloid. Interf. Sci. 23 179 (1985).

    Google Scholar 

  5. J. Védrine: inCharacterization of Heterogeneous Catalysts, F. Delannay, Ed., Marcel Dekker Inc, New York (1984).

    Google Scholar 

  6. Z. Sojka:Proceedings of the 11th Specialized Ampère Symposium on Magnetic Resonance in Catalysis, Menton, France (1993).

  7. J. H. Lunsford: inCatalysis Sciences and Technology, J. R. Anderson and M. Boudart, Eds., Springer Verlag, Berlin, Vol. 8 (1987).

    Google Scholar 

  8. M. Che and E. Giamello: inCatalyst Characterisation: Physical Techniques for Solid Materials, B. Imelik and J. C. Védrine, Eds., Plenum Press, New York (1994).

    Google Scholar 

  9. J. E. Wertz and J. R. Bolton: inElectron Spin Resonance, McGraw-Hill (1972).

  10. M. Che and E. Giamello: inStudies in Surface Science and Catalysis, J. L. G. Fierro, Ed., Elsevier, Amsterdam, 1989,57, B265 (1990).

    Google Scholar 

  11. J. H. Lunsford:Adv. Catal. 22 265 (1972).

    Google Scholar 

  12. K. Dyrek and M. Che: submitted toMagnetic Resonance Review.

  13. H. G. Hecht and T. S. Johnston:J. Chem. Phys. 46 23 (1967).

    Google Scholar 

  14. B. A. Goodman and J. B. Raynor:Adv. Inorg. Chem. Radiochem. 13 135 (1970).

    Google Scholar 

  15. M. Che, B. Canosa, and A. R. Gonzalez-Elipe:J. Phys. Chem. 90 618 (1986).

    Google Scholar 

  16. M. Che, J. C. MeAteer, and A. J. Tench:J. Chem. Soc., Faraday Trans. I 4 2378 (1978).

    Google Scholar 

  17. K. Dyrek, A. Madej, E. Mazur, A. Rokosz, and M. Rusiecka:Wiss. Z. Friedrich-Schiller Univ. Jena, Naturwiss. R. 37 781 (1988).

    Google Scholar 

  18. K. Dyrek, A. Rokosz, and A. Madej:Appl. Magn. Res. 6 309 (1994).

    Google Scholar 

  19. T. T. Chang;Magn. Res. Rev. 9 65 (1984).

    Google Scholar 

  20. M. Che, C. Louis, and J. M. Tatibouët:Polyhedron 5 123 (1986).

    Google Scholar 

  21. C. Louis, and M. Che:J. Catal. 135 156 (1992).

    Google Scholar 

  22. M. Amara, M. Bettahar, L. Gengembre, and D. Olivier:Appl. Catal. 35 153 (1987).

    Google Scholar 

  23. P. Peigneur, J. H. Lunsford, W. De Wilde, and R. A. Schoonheydt:J. Phys. Chem. 81 1179 (1977).

    Google Scholar 

  24. C. Louis, M. Che, and M. Anpo:J. Catal. 141 453 (1993).

    Google Scholar 

  25. C. Louis, M. Che, and M. Anpo:Res. Chem. Intern. 15 81 (1991).

    Google Scholar 

  26. M. Che and A. J. Tench:Adv. Catal. 32 1 (1983).

    Google Scholar 

  27. L. Bonneviot, D. Olivier, and M. Che:J. Mol. Catal. 21 415 (1983).

    Google Scholar 

  28. M. Kermarec, D. Delafosse, and M. Che:J. Chem. Soc., Chem. Commun. 411 (1983).

  29. C. Louis and M. Che:J. Phys. Chem. 91 2876 (1987).

    Google Scholar 

  30. M. Che, M. Fournier, and J. P. Launay:J. Chem. Phys. 71 1954 (1979).

    Google Scholar 

  31. Z. Sojka and M. Che:J. Phys. Chem. (submitted).

  32. E. Giamello, Z. Sojka, M. Che, and A. Zecchina:J. Phys. Chem. 90 6084 (1986).

    Google Scholar 

  33. Z. Sojka, E. Giamello, M. Che, A. Zecchina, and K. Dyrek:J. Phys. Chem. 92 1541 (1988).

    Google Scholar 

  34. E. Giamello, E. Garrone, P. Ugliengo, M. Che, and A. J. Tench:J. Chem. Soc., Faraday Trans. I 85 3987 (1989).

    Google Scholar 

  35. E. Giamello, E. Garrone, E. Guglielminotti, and A. Zecchina:J. Mol. Catal. 24 59 (1984).

    Google Scholar 

  36. M. Che, G. Fichelle, and P. Mériaudeau:Chem. Phys. Letters 17 66 (1972).

    Google Scholar 

  37. J. C. Védrine, H. Praliaud, P. Mériaudeau, and M. Che:Surf. Sci. 80 101 (1979).

    Google Scholar 

  38. P. Mériaudeau, B. Clerjaud, and M. Che:J. Phys. Chem. 87 3872 (1983).

    Google Scholar 

  39. P. Mériaudeau:Chem. Phys. Letters 72 551 (1980).

    Google Scholar 

  40. T. Shimizu:J. Phys. Soc. Jpn. 23 848 (1967).

    Google Scholar 

  41. P. de Montgolfier, P. Mériaudeau, Y. Boudeville, and M. Che:Phys. Rev. 14B 1788 (1976).

    Google Scholar 

  42. P. Mériaudeau, M. Che, and A. J. Tench:Chem. Phys. Letters 31 547 (1975).

    Google Scholar 

  43. A. Davidson and M. Che:J. Phys. Chem. 96 9909 (1992).

    Google Scholar 

  44. E. G. Derouane, J. Thelen, and V. Indovina:Bull. Soc. Chim. Belg. 82 657 (1973).

    Google Scholar 

  45. V. D. Atanasova, V. A. Shvets, and V. B. Kazanskii:Russ. Chem. Rev. 50 209 (1981).

    Google Scholar 

  46. I. D. Mikheikin, G. M. Zhidomirov, and V. B. Kazanskii:Russ. Chem. Rev. 41 468 (1972).

    Google Scholar 

  47. R. A. Schoonheydt:Catal. Rev.-Sci. Eng. 35 129 (1993).

    Google Scholar 

  48. I. R. Leith and H. F. Leach:Proc. Roy. Soc. Lond. A330 247 (1972).

    Google Scholar 

  49. M. Briend-Faure, J. Jeanjean, G. Spector, D. Delafosse, and F. Bozon-Verduraz:J. Chim. Phys. 79 489 (1982).

    Google Scholar 

  50. R. A. Schoonheydt and D. Roodhooft:J. Phys. Chem. 90 6319 (1986).

    Google Scholar 

  51. M. Kermarec, D. Olivier, M. Richard, M. Che, and F. Bozon-Verduraz:J. Phys. Chem. 86 2818 (1982).

    Google Scholar 

  52. D. E. O'Reilly, F. D. Santiago, and R. G. Squires:J. Phys. Chem. 73 3172 (1969).

    Google Scholar 

  53. S. Abdo, A. Kazusaka, and R. F. Howe:J. Phys. Chem. 85 1380 (1981).

    Google Scholar 

  54. S. R. Seyedmonir and R. F. Howe:J. Chem. Soc. Faraday Trans. I 80 87 (1984).

    Google Scholar 

  55. C. Chao and J. H. Lunsford:J. Chem. Phys. 57 2890 (1972).

    Google Scholar 

  56. J. C. Conesa and J. Soria:J. Phys. Chem. 82 1575 (1978).

    Google Scholar 

  57. O. R. Flentge, J. H. Lunsford, P. A. Jacobs, and J. B. Uytterhoeven:J. Phys. Chem. 79 354 (1975).

    Google Scholar 

  58. R. Bechara, A. D'huysser, C. F. Aissi, M. Guelton, J. P. Bonnelle, and A. Abou-Kais:Chem. Mater. 2 522 (1990).

    Google Scholar 

  59. A. Abou-Kais, R. Bechara, D. Ghoussoub, C. F. Aissi, M. Guelton, and J. P. Bonnelle:J. Chem. Soc, Faraday Trans. 87 631 (1991).

    Google Scholar 

  60. A. Abou-Kais, R. Bechara, C. F. Aissi, and M. Guelton:Chem. Mater. 3 557 (1991).

    Google Scholar 

  61. A. Abou-Kais, R. Bechara, C. F. Aissi, and J. P. Bonnelle:J. Chem. Soc., Faraday Trans. 89 2545 (1993).

    Google Scholar 

  62. C. Lepetit, M. Kermarec, and D. Olivier:J. Mol. Catal. 51 95 (1989).

    Google Scholar 

  63. C. Lepetit, M. Kermarec, and D. Olivier:J. Mol. Catal. 51 73 (1989).

    Google Scholar 

  64. Y. Chauvin, J. F. Gaillard, D. V. Quang, and J. W. Andrews:Chem. Ind. 375 (1974).

  65. P. W. Glockner, W. Keim, and R. F. Mason:US Patent, 3 647 914 (1971) to Shell Oil Company.

  66. B. Bogdanovic: inAdvances in Organometallic Chemistry, Academic Press, New York,17, 105 (1979).

    Google Scholar 

  67. P. W. Jolly and G. Wilke: inThe Organic Chemistry of Nickel, Academic Press, New York, Vol. 2, p. 21 (1975).

    Google Scholar 

  68. S. J. McLain and R. R. Schrock:J. Am. Chem. Soc. 100 1474 (1978).

    Google Scholar 

  69. F. X. Cai, C. Lepetit, M. Kermarec, and D. Olivier:J. Mol. Catal. 43 93 (1987).

    Google Scholar 

  70. A. Saltzer:Chemia 38 421 (1984).

    Google Scholar 

  71. C. Louis, J. M. Tatibouët, and M. Che:J. Catal. 109 354 (1988).

    Google Scholar 

  72. J. M. Tatibouët and J. E. Germain:J. Catal. 72 375 (1981).

    Google Scholar 

  73. J. M. Tatibouët, J. E. Germain, and J. C. Volta:J. Catal. 82 240 (1983).

    Google Scholar 

  74. N. Pernicone: in P. C. H. Mitchell (Ed.),Proc. 1st Int. Conf. Chemistry and Uses of Molybdenum, Reading, 1973, CLIMAX, p. 155 (1974).

  75. R. Miranda, J. S. Chung, and C. O. Bennett:Proc. 8th Int. Congr. Catal., Berlin, 1984, Verlag Chemie, Weinheim, Vol. 3, p. 347 (1984).

    Google Scholar 

  76. J. N. Allison and W. A. Goddard III:J. Catal. 92 127 (1985).

    Google Scholar 

  77. M. B. Ward, M. J. Lin, and J. H. Lunsford:J. Catal. 50 306 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louis, C., Lepetit, C. & Che, M. EPR characterization of oxide supported transition metal ions: Relevance to catalysis. Mol Eng 4, 3–38 (1994). https://doi.org/10.1007/BF01004048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01004048

Key words

Navigation