The Histochemical Journal

, Volume 8, Issue 6, pp 625–638 | Cite as

Ultramicrochemical determination of nucleic acids in individual cells using the Zeiss UMSP-I microspectrophotometer. Application to isolated rat hepatocytes of different ploidy classes

  • Robert C. Roozemond


Edström's method for the ultramicrochemical determination of RNA and DNA in individual cells was modified for the measurement of extinction in u.v. light with the aid of the Zeiss scanning microspectrophotometer UMSP-I. With this new procedure, nucleic acids down to about 3 pg RNA or about 4 pg DNA can be measured with a very high accuracy.

The method was applied to enzymatically isolated rat liver parenchymal cells. A mean DNA content of 6.52 pg was found for diploid cells. The DNA content of mononuclear cells of different ploidy levels and of binuclear cells showed a close proportionality with the nuclear ploidy and the number of nuclei per cell. The RNA content of mononuclear diploid cells amounted to 33.4 pg, yielding an RNA/DNA ratio of 5.12. The RNA/DNA ratio was similar for binuclear and mononuclear cells of the same ploidy level but decreased considerably with increasing nuclear ploidy.


Nucleic Acid Individual Cell Parenchymal Cell Liver Parenchymal Ploidy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry, M. N. &Friend, D. S. (1969). High-yield, preparation of isolated rat liver parenchymal cells.J. Cell. Biol. 43, 506–20.Google Scholar
  2. Brattgård, S.-O., Edström, J.-E. &Hydén., H. (1957). The chemical changes in regenerating neurons.J. Neurochem. 1, 316–25.Google Scholar
  3. Brattgård, S.-O., Edström, J.-E. &Hydén, H. (1958). The reproductive capacity of the neuron in retrograde reaction.Expl. Cell. Res. (suppl.).5, 185–200.Google Scholar
  4. De Fonbrune, P. (1949).Techniques de Manipulation, pp. 121–57. Monographs de l'Institut Pasteur, Masson Cie Ed., Paris.Google Scholar
  5. Edström, J.-E. (1953). Ribonucleic acid mass and concentration in individual nerve cells. A new method for quantitative determination.Biochim. biophys. Acta 12, 361–86.Google Scholar
  6. Edström, J.-E. (1956). The content and the concentration of ribonucleic acid in motor anterior horn cells from the rabbit.J. Neurochem. I, 159–65.Google Scholar
  7. Edström, J.-E. (1959). Ribonucleic acid changes in the motoneurons of the frog during axon regeneration.J. Neurochem. 5, 43–9.Google Scholar
  8. Edström, J.-E. (1964). Microextraction and microelectrophoresis for determination and analysis of nucleic acids in isolated cellular units. In:Methods in Cell Physiology. Vol I. (ed. D. M. Prescott), pp. 417–47.Google Scholar
  9. Edström, J.-E. &Eichner, D. (1957). Quantitative Untersuchungen über den Ribonukleinsaüregehalt der Netzhautganglienzellen bei Rind und Mensch.Z. mikrosk.-anat. Forsch. 63, 413–21.Google Scholar
  10. Edström, J.-E. &Eichner, D. (1958). Quantitative Ribonukleinsaüre-Untersuchungen an den Ganglienzellen des Nucleus supraopticus der Albino-Ratte unter experimentellen Bedingungen (Kochsalz-Belastung).Z. Zellforsch. 48, 187–200.Google Scholar
  11. Edström, J.-E. &Kawiak, J. (1961). Microchemical deoxyribonucleic acid determination in individual cells.J. biophys. biochem. Cytol 9, 619–26Google Scholar
  12. Edström, J.-E. &Neuhoff, V. (1973). Micro-electrophoresis for RNA and DNA base analysis. In:Micromethods in Molecular Biology (ed. V. Neuhoff), pp. 213–56. Berlin: Springer Verlag.Google Scholar
  13. Edström, J.-E. &Pigon, A. (1958). Relation between surface, ribonucleic acid content and nuclear volume in encapsulated spinal ganglion cells.J. Neurochem. 3, 95–9.Google Scholar
  14. Epstein, C. J. (1967). Cell size, nuclear content, and the development of polyploidy in the mammalian liver.Proc. natn. Acad. Sci. 57, 327–34.Google Scholar
  15. Hallén, O., Edström, J.-E. &Hamberger, A. (1965). Cytochemical response to acoustic stimuli in the spiral ganglion cells of guinea pigs.Acta oto-laryng. 60, 121–8.Google Scholar
  16. James, J. (1965). Constancy of nuclear DNA and accuracy of cytophotometric measurement.Cytogenetics 4, 19–27.Google Scholar
  17. James, J. (1968). Feulgen-DNA changes in rat liver cell nuclei during the early phase of ischaemic necrosis.Histochemie 13, 312–22.Google Scholar
  18. James, J. (1973). Extinction coefficients in Feulgen-DNA scanning photometry of human lymphocytes.Acta Cytol. 17, 15–18.Google Scholar
  19. James, J. (1976).Light Microscopic Techniques in Biology and Medicine, pp. 186–7., Leiden: Stenfert Kroese.Google Scholar
  20. Kiefer, G. (1970). Recent developments in gallocyanine-chrome alum staining. In:Introduction to Quantitative Cytochemistry. Vol. II (eds. G. L. Wied & G. F. Bahr), pp. 199–208. New York, London: Academic Press.Google Scholar
  21. Morselt, A. F. W. &Van Wijgerden, H. G. M. (1975). Microphotometry of rat liver nucleoproteins during the cell cycle, and comparison of diploid nuclei in the G2 period with tetraploid nuclei.Histochemistry 44, 87–93.Google Scholar
  22. Rouser, G., Fleischer, S. &Yamamoto, A. (1970). Two dimensional, thin layer chromotographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.Lipids 5, 494–6.Google Scholar
  23. Schiemer, A. G. (1969) Über Schnellphotometrie mit dem Zeiss'schen Universalmikrospektrophotometer (UMSP-I).Z. wiss. Mikrosk. 69, 244–56.Google Scholar
  24. Tas, J., Oud, P. &James, J. (1974). The naphthol yellow S stain for proteins tested in a model system of polyacrylamide films and evaluated for practical use in histochemistry.Histochemistry 40, 231–40.Google Scholar
  25. Vendrely, R. (1955). The deoxyribonucleic acid content of the nucleus. In:The Nucleic Acids, Chemistry and Biology. Vol. II. (eds. E. Chargaff & J. N. Davidson), pp. 155–92. New York: Academic Press.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • Robert C. Roozemond
    • 1
  1. 1.Histological Laboratory, Jan Swammerdam InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations